Датчик контроля концентрации кислорода oda2 oda2а

0

Датчик контроля концентрации кислорода oda2 oda2а

Датчик контроля концентрации кислорода oda2 oda2а

The sensor of concentration of oxygen
Датчик кислорода — он же лямбда-зонд — устанавливается в выхлопном коллекторе таким образом, чтобы выхлопные газы обтекали рабочую поверхность датчика. Материал его как правило циркониевый (используется керамический элемент на основе двуокиси циркония, покрытый платиной) — гальванический источник тока, меняющий напряжение ( 50-100 до 850-900 мВ ( может до1.2 В.) . Для исправного датчика разница между максимальным и минимальным значениями должна быть не менее 500 мВ. )
При стехиометрическом составе топливно-воздушной смеси
(14.7: 1) его выходное напряжение составляет 0.4-0.5 В.

в зависимости от температуры и наличия кислорода в окружающей среде. Рабочий диапазон температуры датчика начинается от 300 градусов. Конструкция его предполагает, что одна часть соединяется с наружним воздухом, а другая — с выхлопными газами внутри трубы. В зависимости от концентрации кислорода в выхлопных газах, на выходе датчика появляется сигнал. Уровень этого сигнала, для датчиков систем впрыска конца 80-х — начала 90-х годов, может быть низким (0,1…0,2В) или высоким (0,8…0,9В). Таким образом датчик кислорода — это своеобразный переключатель (триггер), сообщающий контроллеру впрыска о качественной концентрации кислорода в отработавших газах. Фронт сигнала между положениями “Больше” и “меньше” очень мал. Напряжение на выходе датчика должно переключаться с низкого на высокое и обратно (примерно в диапазоне от 200 до 800 мВ) с частотой 0.8…1.0 Гц Настолько мал, что его можно не рассматривать всерьез. Контроллер принимает сигнал с лямбда-зонда, сравнивает его с значением, прошитым в его памяти и, если сигнал отличается от оптимального для текущего режима, корректирует длительность впрыска топлива в ту или иную сторону. Таким образом осуществляется обратная связь с контроллером впрыска и точная подстройка режимов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов Коэффициент избыточности воздуха — L (лямбда) характеризует — насколько реальная топливно-воздушная смесь далека от оптимальной (14,7:1). Если состав смеси — 14,7:1, то L=1 и смесь оптимальна. Если L 1, значит налицо избыток воздуха, смесь бедная. Мощность при L=1,05 — 1,3 падает, но зато экономичность растет. При L > 1,3 смесь перестает воспламеняться и начинаются пропуски в зажигании. Бензиновые двигатели развивают максимальную мощность при недостатке воздуха в 5-15% (L=0,85 — 0,95), тогда как минимальный расход топлива достигается при избытке воздуха в 10-20%% (L=1,1 — 1,2). Таким образом соотношение L при работе двигателя постоянно меняется и диапазон 0,9 — 1,1 является рабочим диапазоном лямбда-регулирования. В то же время, когда двигатель прогрет до рабочей температуры и не развивает большой мощности (например работает на ХХ), необходимо по возможности более строгое соблюдение равенства L=1 для того, чтобы трехкомпонентный катализатор смог полностью выполнить свое предназначение и сократить объем вредных выбросов до минимума

Речь идет о системах ЕВРО-2, а не ЕВРО-3 или ЕВРО-4.
2. ДКК работает в этой системе только при выполнении двух условий: нет режима полной мощности (в серийных прошивках — примерно 75% дросселя, в тюнинговых, как правило, меньше) и не активен алгоритм обогащения по приращению дросселя. В этих режимах ДКК не работает и состав смеси определяется калибровками. Проще говоря, в режиме “тапка в пол” и при ускорении показания ДК не учитываются (то есть он не мешает динамике:). Положительный момент: даже в этих зонах работы действует расчетная адаптивная коррекция времени впрыска (память обучения), которая лишь помогает системе обеспечить именно тот состав смеси, который заложен в мощностных калибровках.
3. Несколько слов о взаимозаменяемости датчиков. Лямбда-зонд с подогревом может устанавливаться вместо такого же, но без подогрева. При этом необходимо смонтировать на автомобиль цепь подогрева и подключить ее к цепи, запитываемой при включении зажигания. Самое выгодное — в параллель к цепи питания электробензонасоса. Не допускается обратная замена — установка однопроводного датчика вместо трех- и более- проводных. Работать не будет. Ну и конечно необходимо, чтобы резьба датчика совпадала с резьбой, нарезанной в штуцере.Ресурс кислородного датчика как правило не превышает 70 тыс. км при удовлетворительном качестве топлива. Об остаточном ресурсе в первом приближении можно судить по амплитуде изменения напряжения на сигнальном проводе датчика, приняв за 100% амплитуду 0.9в. Лямбда-регулирование как функция ECU может быть проверена при помощи батарейки напряжением 1…1.5в и осциллографа. Последний следует установить в ждущий режим, засинхронизировав его импульсом управления впрыском. Измерению подлежит длительность этого импульса. Вначале размыкают соединение лямбда-зонда и ECU (при этом на свободно висящем лямбда-входе ECU должно отмечаться напряжение 0.45в – его появление свидетельствует о переходе ECU на работупо резервной части программы управления) и отмечают длительность импульса впрыска. Затем подключают «+» батарейки к лямбда-входу, а «-» — к массе, и наблюдают через несколько секунд уменьшение длительности импульса впрыска. Такая реакция будет означать стремление ECU обеднить смесь в ответ на моделирование по лямбда-входу ее обогащения. Затем следует соединить вход ECU с массой и наблюдать (также с некоторой задержкой) увеличения длительности измеряемого импульса. Такая реакция будет означать стремление ECU обогатить смесь в ответ на моделирование по лямбда-входу ее обеднения. Тем самым проверка лямбда-регулирования как функции ECU будет проведена. Отсутствие этой функции приводит к тем же внешним проявлениям, что и в случае отсутствия подогрева лямбда-зонда
Если к выхлопной трубе подсоединен четырехкомпонентный газоанализатор, он должен дать следующие показания:
СО — в соответствии с техническими данными автомобиля.
НС-не более 50.
СО2- более 15.0
О2 -не более 2.0
Лямбда: 1.0 ± 0.03.

В статье вы узнаете, что такое кислородный датчик, рассмотрите его конструкцию и метод проведения замены на примере автомобилей ВАЗ с инжекторной системой впрыска. Такие устройства начали использоваться на отечественных автомобилях сравнительно недавно. А именно тогда, когда производитель “АвтоВАЗ” начал гнаться за соблюдением европейских норм токсичности. Ведь чтобы выйти на мировой рынок, необходимо, чтобы автомобили не загрязняли окружающую среду. А кислородные датчики позволяют снизить количество выбросов в несколько раз.

Коэффициент избытка воздуха λ

Прежде чем разбирать конструкцию датчика кислорода и принцип его работы, необходимо определиться с таким важным параметром, как коэффициент избытка воздуха топливовоздушной смеси: что это такое, на что влияет и зачем его измеряет датчик.

В теории работы ДВС существует такое понятие как стехиометрическое отношение – это идеальная пропорция воздуха и топлива, при которой происходит полное сгорание топлива в камере сгорания цилиндра двигателя. Это очень важный параметр, на основании которого рассчитывается топливоподача и режимы работы двигателя. Оно равняется 14,7 кг воздуха к 1 кг топлива (14,7:1). Естественно, такое количество топливовоздушной смеси не поступает в цилиндр в один момент времени, это всего лишь пропорция, которая пересчитывается под реальные условия.

Читать еще:  Горит датчик давления масла ваз 2114 причины

Зависимость мощности (P) и расхода топлива (Q) от коэффициента избытка воздуха

Коэффициент избытка воздуха (λ) – это отношение действительного количества воздуха, поступившего в двигатель, к теоретически необходимому (стехиометрическому) для полного сгорания топлива. Говоря простым языком, это “на сколько больше (меньше) воздуха поступило в цилиндр, чем должно было бы”.

В зависимости от значения λ различают три вида топливовоздушной смеси:

  • λ = 1 – стехиометрическая смесь;
  • λ 1 – “бедная” смесь (избыток – воздух; недостаток – топливо).

Современные двигатели могут работать на всех трех типах смеси, в зависимости от текущих задач (экономия топлива, интенсивное ускорение, снижение концентрации вредных веществ в отработавших газах). С точки зрения оптимальных значений мощности двигателя, коэффициент лямбда должен иметь значение около 0,9 (“богатая” смесь), минимальный расход топлива будет соответствовать стехиометрической смеси (λ = 1). Наилучшие результаты по очистке отработавших газов будут также наблюдаться при λ = 1, поскольку эффективная работа каталитического нейтрализатора происходит при стехиометрическом составе топливовоздушной смеси.

Кому особенно рекомендован

На смену деревянным оконным рамам пришли стеклопакеты. В основном они сделаны из пластика, который не «дышит». Как следствие, снижается приток свежего воздуха. Если не работает вентиляционный канал, то в помещении неизбежно увеличивается концентрация углекислого газа. В таком случае нередко доводится слышать от людей фразу «воздух тяжёлый».

В такой квартире или офисе человек может почувствовать себя плохо из-за недостатка кислорода в крови. Например, начинает болеть голова. В основной группе риска гипертоники, так как организм неизбежно повышает артериальное давление. Это происходит для того, чтобы обеспечить мозг кислородом за счёт увеличения объёма перекачиваемой крови. При этом неизбежно возрастает нагрузка на сосуды, которые могут не выдержать.

Для справки. Гипертонией страдают 20–30 % населения Земли. К возврату 65 лет диагноз подтверждается у 60 %. При этом, больше половины не знают о своём недуге, пока случайно не измерят давление.

Даже если в доме нет гипертоников, то: упадок сил, слабость, депрессия — знакомы многим. Наиболее часто они проявляются осенью зимой и ранней весной. Перечисленные недуги списывают на нехватку витаминов и солнечного света. Но на самом деле причиной тому является избыточное содержание углекислого газа в помещении. В эти времена года окна на проветривание открываются редко, чтобы не выпускать тепло. Поэтому организму не хватает кислорода.

O2-A2 Alphasense

Сенсор электрохимический 2х-электродный O2-A2 Alphasense предназначен для измерения кислорода (O2) в воздухе.

Сенсор O2-A2 Alphasense работает в составе газоанализаторов по определению концентрации кислорода в воздухе рабочей зоны.

Датчик кислорода O2-A2 Oxygen фирмы Alphasense используется в газоанализаторах: СЕАН-Н-O2, ДЕГА и др.

Технические характеристики сенсора O2-A2 Alphasense на кислород

Диапазон измерения кислорода (O2)

Выходной сигнал при 20,9 % кислорода

от 80 до 120 мкА

Время отклика при изменении концентрации от 20,9% до 0% кислорода, с, не более

Дрейф выходного сигнала, не более

Рабочее амосферное давление сенсора O2-A2 Alphasense

от 80 до 120 кПа

Рабочая относительная влажность

Габаритные размеры сенсора O2-A2 Alphasense на кислород

Прайс:

O2-A2 Alphasense сенсор кислорода электрохимический

Цена без НДС, руб.

Цена без НДС, руб.

Цена без НДС, руб.

Предусмотрены скидки в зависимости от количества заказываемого оборудования. Для того чтобы узнать точную цену, присылайте заявки на e-mail gaz-rf@mail.ru с обратными контактными данными.

Доставка по России

Уфа
Москва
Санкт-Петербург
Абакан
Альметьевск
Анадырь
Анапа
Арзамас
Армавир
Архангельск
Астрахань
Ачинск
Балаково
Барнаул
Белгород
Белогорск
Березники
Бийск
Биробиджан
Благовещенск
Братск
Брянск
Владивосток
Владикавказ
Владимир
Волгоград
Волжский
Вологда
Воронеж
Глазов
Екатеринбург
Иваново
Ижевск
Иркутск
Ишимбай
Йошкар-Ола
Казань
Калуга
Кемерово
Кипарисово
Киров
Комсомольск
Кострома
Краснодар
Красноярск
Курган
Курск
Кызыл
Лабытнанги
Липецк
Магадан
Магнитогорск
Майкоп
Махачкала
Миасс
Мурманск
Набережные Челны
Нальчик
Нерюнгри
Нефтекамск
Нефтеюганск
Нижневартовск
Нижний Тагил
Новгород
Новокузнецк
Новороссийск
Новосибирск
Новый Уренгой
Ноябрьск
Омск
Оренбург
Орск
Орёл
Пенза
Пермь
Петрозаводск
Петропавловск
Псков
Пятигорск
Ростов
Рубцовск
Рязань
Салават
Салехард
Самара
Саранск
Саратов
Сахалинск
Севастополь
Северодвинск
Симферополь
Смоленск
Сосногорск
Сочи
Ставрополь
Стерлитамак
Сургут
Сызрань
Сыктывкар
Таганрог
Тамбов
Тверь
Тобольск
Тольятти
Томск
Тула
Тюмень
Улан-Удэ
Ульяновск
Усть-Илимск
Хабаровск
Ханты-Мансийск
Чайковский
Чебоксары
Челябинск
Череповец
Черкесск
Чита
Шахты
Южно-Сахалинск
Якутск
Ялта
Ярославль

Как определить неисправность датчика кислорода

Существует ряд методов для проверки состояния лямбда датчика и его питающих/сигнальных цепей.

Что нужно сделать в первую очередь при диагностике?

  1. Необходимо оценить количество сажи на трубке зонда. Если ее слишком много — датчик будет работать некорректно.
  2. Определить цвет отложений. Если на чувствительном элементе датчика имеются белые или серые отложения — это означает, что используются присадки к топливу или к маслу. Они негативно сказываются на работе лямбда зонда. Если на трубке зонда имеются блестящие отложения — это говорит о том, что в используемом топливе очень много свинца, и от использования такого бензина лучше отказаться, соответственно, сменить марку бензозаправки.
  3. Можно попытаться очистить сажу, однако это не всегда возможно.
  4. Проверить мультиметром целостность проводки. В зависимости от модели конкретного датчика он может иметь от двух до пяти проводов. Один из них будет сигнальным, а остальные — питающими, в том числе, для питания элементов подогрева. Для выполнения процедуры проверки вам понадобится цифровой мультиметр, способный измерять постоянное электрическое напряжение и сопротивление.
  5. Имеет смысл проверить сопротивление нагревателя датчика. В разных моделях лямбда зонда оно будет находиться в пределах от 2 до 14 Ом. Значение питающего напряжения должно быть около 10,5…12 Вольт. В процессе проверки также нужно обязательно проверить целостность всех проводов, подходящих к датчику, а также значение сопротивления их изоляции (как попарно между собой, так и каждого на «массу»).

Как проверить лямбда-зонд видео

Обратите внимание, что нормальная работа датчика кислорода возможна лишь при его нормальной рабочей температуре, равной +300°С…+400°С. Это обусловлено тем, что лишь в таких условиях циркониевый электролит, нанесенный на чувствительный элемент датчика, становится проводником электрического тока. Также при такой температуре разница атмосферного кислорода и кислорода в выхлопной трубе приведет к тому, что на электродах датчика появится электрический ток, который и будет передаваться на электронный блок управления двигателем.

Так как проверка кислородного датчика во многих случаях подразумевает снятие/установку то стоит учесть такие нюансы:

  • Лямбда — устройства очень хрупкие, поэтому при проверке нельзя подвергать их механическим нагрузкам и/или ударам.
  • Резьбу датчика необходимо обработать специальной термопастой. При этом нужно следить, чтобы паста не попала на его чувствительный элемент, поскольку это приведет к его некорректной работе.
  • При закручивании необходимо соблюдать значение крутящего момента, и пользоваться для этих целей динамометрическим ключом.
Читать еще:  Замена датчика заднего хода ваз 2110

Точная проверка лямбда зонда

Точнее всего определить неисправность датчика концентрации кислорода позволит осциллограф. Причем использовать профессиональный аппарат необязательно можно снять осциллограмму используя программу-симулятор на ноутбуке либо другом гаджете.

График правильной работы датчика кислорода

На первом рисунке в данном разделе представлен график правильной работы датчика кислорода. В этом случае на сигнальный провод поступает сигнал, похожий на ровную синусоиду. Синусоида в данном случае означает, что контролируемый датчиком параметр (количество кислорода в выхлопных газах) находится в предельно допустимых границах, и просто происходит его постоянная и периодическая проверка.

График работы сильно загрязненного датчика кислорода

График работы датчика кислорода на обедненной топливной смеси

График работы датчика кислорода на обогащенной топливной смеси

График работы датчика кислорода на бедной топливной смеси

Далее представлены графики, соответствующие сильно загрязненному датчику, использованию двигателем автомобиля обедненной топливной смеси, богатой смеси, а также бедной смеси. Ровные линии на графиках означают, что контролируемый параметр вышел за допустимые пределы в ту или другую сторону.

Идентификация датчика кислорода

Передний лямбда-зонд перед каталитическим нейтрализатором обычно называют датчиком «выше по потоку» или датчиком 1.

Задний датчик, установленный после катализатора, называется датчик «ниже по потоку» или датчик 2.

Типичный рядный 4-цилиндровый двигатель имеет только один блок (ряд 1 / банк 1). Поэтому в рядном 4-цилиндровом двигателе термин «Банк 1, Датчик 1» просто относится к переднему датчику кислорода. «Банк 1, Датчик 2» — это задний кислородный датчик.

Двигатель V6 или V8 имеет два блока (или две части этого «V»). Обычно блок цилиндров, содержащий цилиндр № 1, называется «Банк 1».

Различные производители автомобилей определяют Банк 1 и Банк 2 по-разному. Чтобы узнать, где банк 1 и банк 2 в вашем автомобиле, вы можете посмотреть в руководстве по ремонту или в Google, указав год, марку, модель и объём двигателя.

O2-A2 Alphasense

O2-A2 Alphasense сенсор кислорода электрохимический

Цена без НДС, руб.

Назначение сенсора O2-A2 Alphasense

Сенсор электрохимический 2х-электродный O2-A2 Alphasense предназначен для измерения кислорода (O2) в воздухе.

Сенсор O2-A2 Alphasense работает в составе газоанализаторов по определению концентрации кислорода в воздухе рабочей зоны.

Датчик кислорода O2-A2 Oxygen фирмы Alphasense используется в газоанализаторах: СЕАН-Н-O2, ДЕГА и др.

Технические характеристики сенсора O2-A2 Alphasense на кислород

Диапазон измерения кислорода (O2) сенсора O2-A2 Alphasense

Выходной сигнал при 20,9 % кислорода

от 80 до 120 мкА

Время отклика при изменении концентрации от 20,9% до 0% кислорода, с, не более

Дрейф выходного сигнала сенсора O2-A2 Alphasense, не более

от 80 до 120 кПа

Габаритные размеры сенсора O2-A2 Alphasense на кислород

Цены актуальны на 01.06.21 г.

Прайс-лист:

Описание прибора O2-A2 Alphasense сенсор кислорода электрохимический на KIPKomplekt.RU

Предусмотрены скидки в зависимости от количества заказываемого оборудования. Для того чтобы узнать точную цену, присылайте заявки на e-mail gaz@kipkomplekt.ru или на факс (347) 246-43-34 с обратными контактными данными.

Доставка приборов осуществляется по территории Российской Федерации посредством транспортных компаний “Деловые линии” и “ЖелДорЭкспедиция”, в отдельных случаях – службами доставки “Даймекс” или “PONY EXPRESS”.

На всю представленную продукцию распространяются гарантийные обязательства Завода – Производителя.

ДОСТАВКА ПО РОССИИ

Уфа
Москва
Санкт-Петербург
Абакан
Адлер
Альметьевск
Ангарск
Апатиты
Анадырь
Анапа
Арзамас
Армавир
Архангельск
Асбест
Астрахань
Ачинск
Балаково
Балашиха
Барнаул
Белгород
Белорецк
Бердск
Белогорск
Березники
Бийск
Биробиджан
Благовещенск
Борисоглебск
Боровичи
Братск
Брянск
Бузулук
Великие Луки
Великий Новгород
Владивосток
Владикавказ
Владимир
Волгоград
Волгодонск
Волжский
Вологда
Воркута
Воронеж
Воскресенск
Воткинск
Всеволожск
Выборг
Гатчина
Глазов
Грозный
Дзержинск
Димитровград
Дмитров
Ейск
Екатеринбург
Зеленоград
Златоуст
Иваново
Ижевск
Иркутск
Ишимбай
Йошкар-Ола
Казань
Калининград
Калуга
Каменск-Уральский
Каменск-Шахтинский
Камышин
Качканар
Кемерово
Керчь
Кипарисово
Киров
Кирово-Чепецк
Клин
Клинцы
Ковров
Коломна
Комсомольск-на-Амуре
Кострома
Котлас
Красногорск
Краснодар
Краснокамск
Кузнецк
Курган
Курск
Кызыл
Лабытнанги
Ленинск-Кузнецкий
Ливны
Липецк
Магадан
Магнитогорск
Майкоп
Махачкала
Миасс
Мурманск
Муром
Набережные Челны
Находка
Нальчик
Нерюнгри
Нефтекамск
Нефтеюганск
Нижневартовск
Нижнекамск
Нижний Тагил
Нижний Новгород
Новокузнецк
Новомосковск
Новороссийск
Новосибирск
Новочебоксарск
Новочеркасск
Новый Уренгой
Ногинск
Ноябрьск
Обнинск
Октябрьский
Омск
Оренбург
Орск
Орёл
Пенза
Первоуральск
Пермь
Петрозаводск
Подольск
Петропавловск
Псков
Пятигорск
Рославль
Россошь
Ростов-на-Дону
Рыбинск
Рубцовск
Рязань
Салават
Салехард
Самара
Саранск
Саратов
Сахалинск
Севастополь
Северодвинск
Сергиев Посад
Серов
Серпухов
Симферополь
Смоленск
Солнечногорск
Сосногорск
Сочи
Ставрополь
Старый Оскол
Стерлитамак
Сургут
Сызрань
Сыктывкар
Таганрог
Тамбов
Тверь
Тобольск
Тольятти
Томск
Тула
Тюмень
Улан-Удэ
Ульяновск
Усинск
Уссурийск
Усть-Кут
Усть-Илимск
Ухта
Хабаровск
Ханты-Мансийск
Чайковский
Чебоксары
Челябинск
Череповец
Чехов
Черкесск
Чита
Шахты
Энгельс
Южно-Сахалинск
Якутск
Ялта
Ярославль

Как работает датчик кислорода

В современных автомобилях используются различные типы лямбда-зондов. Рассмотрим устройство и принцип работы самого популярного из них — датчика кислорода на диоксиде циркония (ZrO2). Датчик состоит из следующих основных элементов:

  • Внешний электрод — контактирует с выхлопными газами.
  • Внутренний электрод — контактирует с атмосферой.
  • Нагревательный элемент — используется для нагрева лямбда-зонда и более быстрого доведения его до рабочей температуры (около 300 ° C).
  • Твердый электролит — расположен между двумя электродами (оксид циркония).
  • Корпус.
  • Протектор наконечника — имеет специальные отверстия (перфорацию) для входа выхлопных газов.

Внешний и внутренний электроды имеют платиновое покрытие. Принцип действия такого лямбда-зонда основан на возникновении разности потенциалов между чувствительными к кислороду слоями платины (электродами). Это происходит при нагревании электролита, когда через него проходят ионы кислорода из воздуха и выхлопных газов. Напряжение на электродах датчика зависит от концентрации кислорода в выхлопных газах. Чем она выше, тем ниже напряжение. Диапазон напряжения сигнала датчика кислорода составляет от 100 до 900 мВ. Сигнал имеет синусоидальную форму, в которой различают три диапазона: от 100 до 450 мВ — бедная смесь, от 450 до 900 мВ — богатая смесь, 450 мВ соответствуют стехиометрическому составу топливовоздушной смеси.

Лямбда-зонд: почему датчик кислорода так важен для автомобиля

Сомнительная заправка, плохой бензин, «чек» на панели — стандартный и быстрый путь к замене кислородного датчика. Про лямбда-зонд слышали многие автомобилисты, но мало кто разбирался, за что именно он отвечает и почему так легко выходит из строя. Рассказываем про датчик кислорода — «обоняние» двигателя.

Лямбда и стехиометрия двигателя

Название датчика происходит от греческой буквы λ (лямбда), которая обозначает коэффициент избытка воздуха в топливно-воздушной смеси. Для полного сгорания смеси соотношение воздуха с топливом должно быть 14,7:1 (λ=1). Такой состав топливно-воздушной смеси называют стехиометрическим — идеальным с точки зрения химической реакции: топливо и кислород в воздухе будут полностью израсходованы в процессе горения. При этом двигатель произведёт минимум токсичных выбросов, а соотношение мощности и расхода топлива будет оптимальным.

Читать еще:  Датчик возле масляного фильтра ваз 2110

Если лямбда будет 1 (избыток воздуха) смесь называют обеднённой. Чересчур богатая смесь — это повышенный расход топлива и более токсичный выхлоп, а слишком бедная смесь грозит потерей мощности и нестабильной работой двигателя.

Из графика видно, что при λ=1 мощность двигателя не пиковая, а расход топлива не минимален — это лишь оптимальный баланс между ними. Наибольшую мощность мотор развивает на слегка обогащённой смеси, но расход топлива при этом возрастает. А максимальная топливная эффективность достигается на слегка обеднённой смеси, но ценой падения мощности. Поэтому задача ЭБУ (электронного блока управления) двигателя — корректировать топливно-воздушную смесь исходя из ситуации: обогащать её при холодном пуске или резком ускорении, и обеднять при равномерном движении, добиваясь оптимальной работы мотора во всех режимах. Для этого блок управления ориентируется на показания датчика кислорода.

Зачем нужен кислородный датчик

Датчиков в современном двигателе великое множество. С помощью различных сенсоров ЭБУ замеряет температуру забортного воздуха и его поток, «видит» положение дроссельной заслонки, отслеживает детонацию и положение коленвала — словом, внимательно следит за воздухом «на входе» и показателями работы мотора, регулируя подачу топлива для создания оптимальной смеси в цилиндрах.

Лямбда-зонд показывает, что же получилось «на выходе», замеряя количество кислорода в выхлопных газах. Другими словами, кислородный датчик определяет, оптимально ли работает мотор, соответствуют ли расчёты ЭБУ реальной картине и нужно ли вносить в них поправки. Основываясь на данных с лямбда-зонда, ЭБУ вносит соответствующие коррекции в работу двигателя и подготовку топливно-воздушной смеси.

Где находится кислородный датчик

Датчик кислорода установлен в выпускном коллекторе или приёмной трубе глушителя двигателя, замеряя, сколько несгоревшего кислорода находится в выхлопных газах. На многих автомобилях есть ещё один лямбда-зонд, расположенный после каталитического нейтрализатора выхлопа — для контроля его работы.

Если у двигателя две головки блока (V-образники, «оппозитники»), то удваивается количество выпускных коллекторов и катализаторов, а значит и лямбда-зондов — у современной машины может быть и 4 кислородных датчика.

Устройство кислородного датчика

Классический лямбда-зонд порогового типа — узкополосный — работает по принципу гальванического элемента. Внутри него находится твёрдый электролит — керамика из диоксида циркония, поэтому такие датчики часто называют циркониевыми. Поверх керамики напылены токопроводящие пористые электроды из платины. Будучи погружённым в выхлопные газы, датчик реагирует на разницу между уровнем кислорода в них и в атмосферном воздухе, вырабатывая на выходе напряжение, которое считывает ЭБУ.

Циркониевый элемент лямбда-зонда приобретает проводимость и начинает работать только после прогрева до температуры 300 °C. До этого ЭБУ двигателя действует «вслепую» согласно топливной карте, без обратной связи от кислородного датчика, что повышает расход топлива при прогреве двигателя и количество вредных выбросов. Чтобы быстрее задействовать лямбда-зонд, ему добавляют принудительный электрический подогрев. Кислородные датчики с подогревом внешне отличаются увеличенным количеством проводов: у них 3–4 жилы против 1–2 у обычных датчиков.

В названии узкополосного датчика кроется его недостаток — он способен замерять количество кислорода в выхлопе в достаточно узком диапазоне. ЭБУ может корректировать смесь по его показаниям только в некоторых режимах работы мотора (холостой ход, движение с постоянной скоростью), что не отвечает современным требованиям по экономичности и экологичности двигателей. Для более точных замеров в широком диапазоне используют широкополосный лямбда-зонд (A/F-сенсор), который также называют датчиком соотношения «воздух-топливо» (Air/Fuel Sensor). Обычно к нему подходят 5–6 проводов, хотя бывают и исключения.

Внешне «широкополосник» похож на обычный датчик кислорода, но внутри есть отличия. Благодаря специальным накачивающим ячейкам эталонный лямбда-коэффициент газового содержимого датчика всегда равен 1, и генерируемое им напряжение постоянно. А вот ток меняется в зависимости от количества кислорода в выхлопных газах, и ЭБУ двигателя считывает его в реальном времени. Это позволяет электронике быстрее и точнее корректировать смесь, добиваясь её полного сгорания в цилиндрах.

Почему до сих пор производят узкополосные датчики? Во-первых, для старых автомобилей, где A/F-сенсоры не применялись. Во-вторых, из-за особенностей «широкополосника» его нельзя устанавливать после катализатора, где он быстро выходит из строя. А контролировать работу катализатора как-то надо. Поэтому в современных двигателях ставят два лямбда-зонда разного типа: широкополосный (управляющий) — в районе выпускного коллектора, а узкополосный (диагностический) — после катализатора.

Причины и признаки неисправности лямбда-зонда

Основная причина поломок кислородных датчиков — некачественный бензин: свинец и ферроценовые присадки оседают на чувствительном элементе датчика, выводя его из строя. На состояние лямбда-зонда влияет и нестабильная работа двигателя: при пропусках зажигания от старых свечей или пробитых катушек несгоревшая смесь попадает в выхлопную систему, где догорает, выжигая и катализатор, и датчики кислорода. Приговорить датчик также может попадание в цилиндры антифриза или масла.

Самый очевидный признак неисправности лямбда-зонда — индикатор Check Engine на приборной панели. Считав код ошибки с помощью сканера или самодиагностики, можно проверить, какой именно датчик вышел из строя, если их несколько. Иногда всё дело в повреждённой проводке датчика — с проверки цепи и стоит начать поиск поломки.

Но далеко не всегда проблемный лямбда-зонд зажигает «Чек»: иногда он не ломается полностью, а медленно умирает, давая при этом ложные показания, из-за чего ЭБУ двигателя неверно корректирует состав смеси. В этом случае нужно ориентироваться на косвенные признаки — ухудшение работы двигателя.

Проблемы с датчиком кислорода нарушают всю систему обратной связи и лямбда-коррекции, вызывая целый букет неисправностей. Прежде всего, это увеличение расхода топлива и токсичности выхлопа, снижение мощности и нестабильный холостой ход. Если вовремя не заменить лямбда-зонд, следом выйдет из строя каталитический нейтрализатор, осыпавшись из-за перегрева от обогащённой смеси.

Универсальные кислородные датчики

Цена на оригинальные датчики кислорода вряд ли обрадует автомобилистов, но все лямбда-зонды работают по единому принципу, что позволяет без труда подобрать замену. Главное, чтобы соответствовал типа датчика (широкополосный/узкополосный), количество проводов и резьбовая часть. В продаже есть универсальные кислородные датчики без разъёма, которые можно использовать на десятках моделей автомобилей — подобрать и купить лямбда-зонд не составляет проблемы.

Чтобы избежать проблем с кислородными датчиками, следите за состоянием двигателя, заправляйтесь качественным топливом и регулярно выполняйте компьютерную диагностику, которая позволит выявить неисправности на ранней стадии.

голоса
Рейтинг статьи
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии