Как повысить напряжение компьютерного блока питания

0

Ремонт компьютерного блока питания

Итак, дали в ремонт блок питания Power Man на 350 Ватт

Что делаем первым делом? Внешний и внутренний осмотр. Смотрим на “потроха”. Если ли какие сгоревшие радиоэлементы? Может где-то обуглена плата или взорвался конденсатор, либо пахнет горелым кремнием? Все это учитываем при осмотре. Обязательно смотрим на предохранитель. Если он сгорел, то ставим вместо него временную перемычку примерно на столько же Ампер, а потом замеряем входное сопротивление через два сетевых провода. Это можно сделать на вилке блока питания при включенной кнопке “ВКЛ”. Оно НЕ должно быть слишком маленькое, иначе при включении блока питания еще раз произойдет короткое замыкание.

Что нужно для переделки

Поскольку значительная часть современных БП (мощностью от 200 до 400 В) производятся на базе ШИМ-контроллера 3528, опишем процедуру переделки именно для таких источников питания. Нам потребуются:

  • резисторы номиналом 1,0/2,7 кОм;
  • резисторы 0,2/0,068 кОм;
  • паяльник с принадлежностями (канифоль, олово);
  • зажимы типа «крокодил» с проводами;
  • отвёртки с плоским и крестообразным наконечником;
  • 12-вольтное автомобильное реле;
  • 3 одноамперных диода 1N4007;
  • 2 конденсатора на 25 В;
  • светодиод зелёного цвета;
  • мультиметр (или вольтамперметр);
  • силиконовый герметик;
  • 2-метровый медный изолированный провод.

Блок питания, который мы хотим использовать для самодельного ЗУ, должен иметь следующие характеристики:

  • номинал напряжения – 110/220 В;
  • выходное напряжение ИБП – 12 В;
  • выходной ток – 8 А;
  • номинал мощности – 230 Вт.

Если всё готово, можно приступать к переделке компьютерного импульсного блока питания в автомобильное зарядное устройство.

Практика.

Частоту можно изменить заменив конденсатор C или(и) резистор R на другой номинал.

Было бы правильно поставить конденсатор с меньшей емкостью, а резистор заменить на последовательно соединенные постоянный резистор и переменный типа СП5 с гибкими выводами.

Затем, уменьшая его сопротивление, измерять напряжение, пока напряжение не достигнет 5.0 вольт. Затем впаять постоянный резистор на место переменного, округлив номинал в большую сторону.

Я пошел по более опасному пути – резко изменил частоту впаяв конденсатор меньшей ёмкости.

По формуле получаем

f=61,1 кГц

После замены конденсатора

f =91,6 кГц

частота увеличилась на 50% соответственно и мощность возросла.

Если R не будем менять, то формула упрощается:

Или если С не будем менять, то формула :

Проследите конденсатор и резистор подключенные к 5 и 6 ножкам микросхемы. и замените конденсатор на конденсатор с меньшей ёмкостью.

1 Тема от Aivan 27.05.2016 13:56:28 (5 лет назад)

  • Aivan
  • Участник
  • Автор темы
  • Неактивен
  • Стаж: 9 лет 1 месяц
  • Сообщений: 2 726
  • Репутация : [ 80 | 0 ]

Тема: Как увеличить выходное напряжение импульсного БП (сделал фотосессию))

Имеется импульсный БП, выходное напряжение 14 В, ток 3А. измеренное напряжение на самом деле 14,9 В.
требуется получить на выходе 16,8 В.
БП построен на микросхеме sg 5842
http://www.datasheetlib.com/datasheet/7 … #datasheet
Конкретно по этой микросхеме не нашел переделки.
Подскажите возможно ли? если да то какой резистор надо менять и в каких пределах?

Отредактировано Aivan (27.05.2016 18:22:48, 5 лет назад)

2 Ответ от dRomka 27.05.2016 14:03:47 (5 лет назад)

  • dRomka
  • Участник
  • Неактивен
  • Стаж: 11 лет 5 месяцев
  • Сообщений: 4 114
  • Репутация : [ 78 | 3 ]

Re: Как увеличить выходное напряжение импульсного БП (сделал фотосессию))

в выходной цепи есть 431 стабилитрон .

в выходной цепи конденсаторы на скок мкф и вольт стоят .

или схему или марку бп . можно фото .

Отредактировано dRomka (27.05.2016 14:05:49, 5 лет назад)

3 Ответ от telemaster51 27.05.2016 14:03:58 (5 лет назад)

  • telemaster51
  • Участник
  • Неактивен
  • Стаж: 11 лет 11 месяцев
  • Сообщений: 1 275
  • Репутация : [ 35 | 0 ]

Re: Как увеличить выходное напряжение импульсного БП (сделал фотосессию))

Поиграй с номиналами резисторного делителя R14,R15 в цепи управления оптроном

Можно переменник временно подкинуть.

Отредактировано telemaster51 (27.05.2016 14:08:12, 5 лет назад)

4 Ответ от Aivan 27.05.2016 14:16:18 (5 лет назад)

  • Aivan
  • Участник
  • Автор темы
  • Неактивен
  • Стаж: 9 лет 1 месяц
  • Сообщений: 2 726
  • Репутация : [ 80 | 0 ]

Re: Как увеличить выходное напряжение импульсного БП (сделал фотосессию))

в выходной цепи есть 431 стабилитрон .

в выходной цепи конденсаторы на скок мкф и вольт стоят .

или схему или марку бп . можно фото .

фото вечером сделаю, модель: FLL10361
кондер 25 В, 680 мкФ
а как узнать 431 стабилитрон?

Поиграй с номиналами резисторного делителя R14,R15 в цепи управления оптроном

Можно переменник временно подкинуть.

а в каких пределах можно переменник поставить?

на плате вот такие надписи NJD-8779/8785/8786 3546P10267

если прям такой, то нету, компоненты смд, вером смогу прочитать

Читать еще:  Ремонт шпильки натяжного ролика ваз 2109

Отредактировано (27.05.2016 14:29:23, 5 лет назад)

5 Ответ от dRomka 27.05.2016 15:37:44 (5 лет назад)

  • dRomka
  • Участник
  • Неактивен
  • Стаж: 11 лет 5 месяцев
  • Сообщений: 4 114
  • Репутация : [ 78 | 3 ]

Re: Как увеличить выходное напряжение импульсного БП (сделал фотосессию))

6 Ответ от Aivan 27.05.2016 17:22:10 (5 лет назад)

  • Aivan
  • Участник
  • Автор темы
  • Неактивен
  • Стаж: 9 лет 1 месяц
  • Сообщений: 2 726
  • Репутация : [ 80 | 0 ]

Re: Как увеличить выходное напряжение импульсного БП (сделал фотосессию))

немного получилось, но в процессе БП перестал запускаться, теперь буду еще и ремонт осваивать
А вообще изначально он был на 12 В, поверх заводской пайки, был напаян резистор R27, причем китайцами, так как корпус был заклеен, ну и на бп маркировка 14 В, когда убрал напаяный получилость 12 В.
Он был на 8,3 кОм, поставил на 6,5 кОм (также параллельно), получилось 16 В на выходе, потом пытался набрать из нескольких еще меньше номинал, но что-то пошло не так и на выходе ничего не получилось.
Наверно как раз этот стабилитрон испортил,
На нем прочитал 4NA3, поиском не нашел.
Попробую вечером на макро сфотать, может неправильно прочитал. А вообще его как проверить – то?
и чем заменить в случае неисправности?



да в точке между резисторами, когда это все работало, было 2,49 Вольта.
а подбирать сопротивление надо только одного резистора R27? или R24, R25 тоже надо подбирать?

в выходной цепи есть 431 стабилитрон .

в выходной цепи конденсаторы на скок мкф и вольт стоят .

или схему или марку бп . можно фото .

Добавил фото, и описание, подскажешь что?

Отредактировано Aivan (27.05.2016 18:49:11, 5 лет назад)

Проверка элементов дежурного источника напряжения

В формировании дежурного напряжения участвуют следующие элементы:

Следует проверить их. Транзисторы можно проверить, не выпаивая, тестером (в режиме проверки диодов). Источник опорного напряжения лучше выпаять и проверить, собрав небольшую проверочную схему.

Как это сделать – можно почитать в соответствующей статье на этом сайте. Оптопара выходит из строя редко.

Чтобы проверить конденсаторы, необходим измеритель ESR. Если его нет, тогда можно заменить «подозрительный» элемент заведомо исправным — с такой же емкостью и рабочим напряжением.

Если конденсатор подсох, у него растет ESR и уменьшается емкость. Про конденсаторы и ESR можно почитать в предыдущей статье.

Иногда выходят из строя и резисторы, причем это может быть не очень заметно по внешнему виду.

Поиск такой неисправности – сущее наказание! :negative:

Необходимо смотреть на маркировку резистора (в виде цветных колец) и сверять маркировочное значение с реальным. И заодно глубоко вникать в принципиальную схему конкретного блока.

Были случаи, когда резистор в цепи источника опорного напряжения увеличивал свое сопротивление, и «дежурка» поднимала свое напряжение до +7 В!

Это повышенное напряжение питало часть компонентов на материнской плате. Компьютер из-за этого «подвисал».

На что еще обратить внимание при выборе блока питания для компьютера?

Также при выборе блока питания для персонального компьютера имейте в виду, что современные комплектующие работают с БП стандарта питания ATX 12V версии 2.х, а это означает, что если поставить старый блок питания в новый компьютер, то он работать не будет.

Наличие модуля PFC будет дополнительным плюсом к параметрам современного блока питания. PFC (Power Factor Correction) позволяет корректировать коэффициент мощности и тем самым защищает комплектующие от скачков напряжения в электросети. Он бывает пассивным или активным. Активный используется для мощных блоков, для средних и слабых будет достаточно пассивного.

Не последним параметром является количество и размер вентиляторов на блоке питания. Как правило это 1 большой вентилятор (120х120, 135х135 или 140х140 мм) снизу, но на мощных блоках может также иметься небольшой вентилятор (80х80 или 100х100 мм) на задней панели для дополнительного отвода теплого воздуха из корпуса. Чем больше вентилятор, тем меньше он будет создавать шума при работе. Модели без него или с одним маленьким лучше не приобретать.

А что на выходе?

Или любой другой. Модификаций этого прибора очень много. Они свободно продаются в магазинах радио- и электротоваров. Для наших целей вполне подойдет самый простой и дешевый.

С помощью мультиметра мы будем измерять напруги на разъемах работающего блока питания и сравнивать показатели с номинальными.

В норме значения выходных напряжений при любой нагрузке (не превышающей допустимую для вашего БП) не должны отклоняться больше, чем на 5%.

  • Включаем компьютер. Системник должен быть собран в обычной комплектации, т. е. в нем должно присутствовать всё оборудование, которое вы используете постоянно. Дадим блоку питания немного прогреться – примерно 20-30 минут просто поработаем на ПК. Это повысит достоверность показателей.
  • Далее запускаем игру или тестовое приложение, чтобы нагрузить систему по полной. Это позволит проверить, способен ли питатель обеспечить энергией устройства, когда они работают с максимальным потреблением. В качестве нагрузки можете использовать стрессовый тест PowerSupply из программы OCCT .
Читать еще:  Какой ток потребляет стартер

  • Включаем мультиметр. Устанавливаем переключатель на значение 20 V постоянного напряжения (шкала постоянных напруг обозначена буквой V, рядом с которой нарисованы прямая и пунктирная линии).

  • Красный щуп мультиметра подсоединяем к любому разъему напротив цветного повода (красного, желтого, оранжевого). Черный – напротив черного. Или закрепляем его на любой металлической детали на плате, которая не находится под напряжением (измерение напруг следует проводить относительно нуля).

  • Снимаем показатели с дисплея прибора. По желтому проводу подается 12 V, значит, на дисплее должно быть значение, равное 12 V ± 5%. По красному – 5 V, нормальным будет показатель 5 V ± 5%. По оранжевому, соответственно – 3,3 V± 5%.

Более низкие напряжения на одной или нескольких линиях говорят о том, что БП не вытягивает нагрузку. Такое бывает, когда его фактическая мощность не соответствует потребностям системы из-за износа компонентов или не слишком высокого качества изготовления. А может, из-за того, что он изначально был неправильно подобран или перестал справляться со своей задачей после апгрейда компьютера.

Для правильного определения необходимой мощности БП удобно использовать специальные сервисы-калькуляторы. Например, этот . Здесь пользователю следует выбрать из списков всё оборудование, установленное на ПК, и нажать «Calculate». Программа не только рассчитает требуемую мощность питателя, но и предложит 2-3 подходящие модели.

Схемотехника блоков питания персональных компьютеров. Часть 1.

Один из самых важных блоков персонального компьютера – это, конечно, импульсный блок питания. Для более удобного изучения работы блока есть смысл рассматривать каждый его узел по отдельности, особенно, если учесть, что все узлы импульсных блоков питания различных фирм практически одинаковые и выполняют одни и те же функции. Все блоки питания рассчитаны на подключение к однофазной сети переменного тока 110/230 вольт и частотой 50 – 60 герц. Импортные блоки на частоту 60 герц прекрасно работают и в отечественных сетях.

Основной принцип работы импульсных блоков питания заключается в выпрямлении сетевого напряжения с последующим преобразованием его в переменное высокочастотное напряжение прямоугольной формы, которое понижается трансформатором до нужных значений, выпрямляется и фильтруется.

Таким образом, основную часть схемы любого компьютерного блока питания, можно разделить на несколько узлов, которые производят определённые электрические преобразования. Перечислим эти узлы:

Сетевой выпрямитель. Выпрямляет переменное напряжение электросети (110/230 вольт).

Высокочастотный преобразователь (Инвертор). Преобразует постоянное напряжение, полученное от выпрямителя в высокочастотное напряжение прямоугольной формы. К высокочастотному преобразователю отнесём и силовой понижающий импульсный трансформатор. Он понижает высокочастотное переменное напряжение от преобразователя до напряжений, требуемых для питания электронных узлов компьютера.

Узел управления. Является “мозгом” блока питания. Отвечает за генерацию импульсов управления мощным инвертором, а также контролирует правильную работу блока питания (стабилизация выходных напряжений, защита от короткого замыкания на выходе и пр.).

Промежуточный каскад усиления. Служит для усиления сигналов от микросхемы ШИМ-контроллера и подачи их на мощные ключевые транзисторы инвертора (высокочастотного преобразователя).

Выходные выпрямители. С помощью выпрямителя происходит выпрямление – преобразование переменного низковольного напряжения в постоянное. Здесь же происходит стабилизация и фильтрация выпрямленного напряжения.

Это основные части блока питания компьютера. Их можно найти в любом импульсном блоке питания, начиная от простейшего зарядника для сотового телефона и заканчивая мощными сварочными инверторами. Отличия заключаются лишь в элементной базе и схемотехнической реализации устройства.

Довольно упрощённо структуру и взаимосвязь электронных узлов компьютерного блока питания (формат AT) можно изобразить следующим образом.

О всех этих частях схемы будет рассказано в дальнейшем.

Рассмотрим принципиальную схему импульсного блока питания по отдельным узлам. Начнём с сетевого выпрямителя и фильтра.

Сетевой фильтр и выпрямитель.

Отсюда, собственно, и начинается блок питания. С сетевого шнура и вилки. Вилка используется, естественно, по «евростандарту» с третьим заземляющим контактом.

Следует обратить внимание, что многие недобросовестные производители в целях экономии не ставят конденсатор С2 и варистор R3, а иногда и дроссель фильтра L1. То есть посадочные места есть, и печатные дорожки тоже, а деталей нет. Ну, вот прям как здесь.

Читать еще:  Как проверить сопротивление высоковольтных проводов мультиметром

Как говорится: “No comment “.

Во время ремонта желательно довести фильтр до нужной кондиции. Резисторы R1, R4, R5 выполняют функцию разрядников для конденсаторов фильтра после того как блок отключен от сети. Термистор R2 ограничивает амплитуду тока заряда конденсаторов С4 и С5, а варистор R3 защищает блок питания от бросков сетевого напряжения.

Стоит особо рассказать о выключателе S1 (“230/115”). При замыкании данного выключателя, блок питания способен работать от сети с напряжением 110. 127 вольт. В результате выпрямитель работает по схеме с удвоением напряжения и на его выходе напряжение вдвое больше сетевого.

Если необходимо, чтобы блок питания работал от сети 220. 230 вольт, то выключатель S1 размыкают. В таком случае выпрямитель работает по классической схеме диодный мост. При такой схеме включения удвоения напряжения не происходит, да это и не нужно, так как блок работает от сети 220 вольт.

В некоторых блоках питания выключатель S1 отсутствует. В других же его располагают на тыльной стенке корпуса и помечают предупреждающей надписью. Нетрудно догадаться, что если замкнуть S1 и включить блок питания в сеть 220 вольт, то это кончится плачевно. За счёт удвоения напряжения на выходе оно достигнет величины около 500 вольт, что приведёт к выходу из строя элементов схемы инвертора.

Поэтому стоит внимательнее относиться к выключателю S1. Если предполагается использование блока питания только совместно с сетью 220 вольт, то его можно вообще выпаять из схемы.

Вообще все компьютеры поступают в нашу торговую сеть уже адаптированными на родные 220 вольт. Выключатель S1 либо отсутствует, либо переключен на работу в сети 220 вольт. Но если есть возможность и желание то лучше проверить. Выходное напряжение, подаваемое на следующий каскад составляет порядка 300 вольт.

Можно повысить надёжность блока питания небольшой модернизацией. Достаточно подключить варисторы параллельно резисторам R4 и R5. Варисторы стоит подобрать на классификационное напряжение 180. 220 вольт. Такое решение сможет уберечь блок питания при случайном замыкании выключателя S1 и включении блока в сеть 220 вольт. Дополнительные варисторы ограничат напряжение, а плакий предохранитель FU1 перегорит. При этом после несложного ремонта блок питания можно вернуть в строй.

Конденсаторы С1, С3 и двухобмоточный дроссель на ферритовом сердечнике L1 образуют фильтр способный защитить компьютер от помех, которые могут проникнуть по сети и одновременно этот фильтр защищает сеть от помех, создаваемых компьютером.

Возможные неисправности сетевого выпрямителя и фильтра.

Характерные неисправности выпрямителя, это выход из строя одного из диодов “моста” (редко), хотя бывают случаи, когда выгорает весь диодный мост, или утечка электролитических конденсаторов (гораздо чаще). Внешне это характеризуется вздутием корпуса и утечкой электролита. Подтёки очень хорошо заметны. При пробое хотя бы одного из диодов выпрямительного моста, как правило, перегорает плавкий предохранитель FU1.

При ремонте цепей сетевого выпрямителя и фильтра имейте в виду то, что эти цепи находятся под высоким напряжением, опасным для жизни ! Соблюдайте технику электробезопасности и не забывайте принудительно разряжать высоковольные электролитические конденсаторы фильтра перед проведением работ!

Для того, чтобы вам было легче понять, какое напряжение с блока питания вы получите, я составил небольшую таблицу. Пользоваться ей нужно по такому принципу: положительное напряжение + ноль =итог.

ПоложительноеНольИтог
+12V0V+12V
+5V-5V+10V
+12V+3,3V+8,7V
+3,3V-5V+8,3V
+12V+5V+7V
+5V0V+5V
+3,3V0V+3,3V
+5V+3,3V+1,7V
0V0V0V

А вы знаете, что не пропустите ни один наш материал, если оформите подписку? Оформить подписку легко: достаточно лишь ввести свой email в форму под этой статьей и нажать на кнопку «Подписаться на рассылку». И вы всегда будете в курсе наших публикаций!

Надеюсь, сегодняшняя статья была понятна и полезна. Теперь вы знаете, как получить нужное напряжение с блока питания компьютера и каким образом взять 12 Вольт. Однако помните, что обращение с электроприборами требует соблюдения правил техники безопасности. В случае, если вы не уверены в своих знаниях, лучше попросить помощи у профессионала.

голоса
Рейтинг статьи
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии