0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Подробно о процессе кавитации

Согласно определению Кристофера Бреннена: «Когда жидкость подвергается давлению ниже порогового (напряжению растяжения), тогда сплошность ее потока нарушается, и образуются парообразные полости. Это явление называется кавитацией. Когда местное давление жидкости в некоторой точке падает ниже величины, соответствующей давлению насыщенного пара при данной окружающей температуре, тогда жидкость переходит в другое состояние, образуя, в основном, фазовые пустоты, которые называются кавитационными пузырями. Возможно и другое образование кавитационных пузырей путем местной подачи энергии. Это может быть достигнуто фокусировкой интенсивного лазерного импульса (оптическая кавитация) или искрой электрического разряда».

Физический процесс кавитации точно такой же, как и процесс, происходящий во время закипания. Основное различие между ними — это изменение фазового состояния жидкости. Закипание – процесс, при котором местное давление насыщенного пара жидкости выше местного окружающего давления и присутствует достаточно энергии, чтобы изменить нормальное состояние жидкости в газообразное.

Для кавитационного явления нужна поверхность образования кавитационных «пузырей». Этой поверхностью являются нечистоты на стенках водосборника и примеси, содержащиеся в жидкости. Общепринятым является то, что водоотталкивающая (гидрофобная) поверхность стабилизирует появление небольших пузырей. Эти пузыри, появившиеся раньше, начнут неограниченно расти, когда их подвергнут пороговому давлению, названному порогом Блэйка.

реактивное движение

Максимальная скорость привычных водных транспортных средств ограничена. В их двигателях происходит непрямое преобразование химической энергии топлива в энергию движения воды: через преобразование в механическую энергию различного рода движителей (гребных винтов, турбин, насосов). Неизбежные при непрямом преобразовании потери приводят к ограничению на максимальную скорость — на уровне 100-130 км/ч (это связано с кавитацией, разрушающей лопасти винтов, импеллеров и др.). Но это ограничение преодолеть можно.

В Центре импульсно-детонационного горения (Центр ИДГ) при Институте химической физики им. Н.Н. Семенова Российской академии наук (ИХФ РАН) разработаны, созданы и испытаны экспериментальные образцы прямоточного импульсно-детонационного гидрореактивного движителя, работающие на иных физических принципах и не имеющие мировых аналогов. В новом движителе происходит прямое преобразование химической энергии топлива в энергию движения воды. В результате надводному объекту сообщается гидрореактивная тяга, ускоряющая его до скоростей, недостижимых при использовании традиционных движителей. Отличительная особенность нового движителя — применение наиболее энергоэффективного и энергосберегающего рабочего цикла: цикла Зельдовича* с управляемым детонационным горением смеси моторного топлива с окислителем. Кроме того, в нем нет подвижных механических частей.

Экспериментальные образцы спроектированы специалистами ИХФ РАН на основе гидродинамических расчетов, позволивших оптимизировать параметры движителя. Конструкция и принцип работы движителя просты (рис. 1). Он представляет собой водовод (профилированную трубу с водозаборным устройством и соплом, погруженную в воду) с введенной в него импульсно-детонационной трубкой. Импульсно-детонационная трубка — сердце движителя — предназначена для генерации коротких, но очень интенсивных периодических импульсов давления в виде ударных волн, выходящих в водовод и выбрасывающих забортную воду из водовода через сопло. Каждый импульс давления в импульсно-детонационной трубке — это детонационная волна, образованная в результате зажигания топливной смеси и последующего быстрого, но управляемого перехода горения в детонацию — ускорения пламени от

2000 м/c. Каждая ударная волна, выходящая в водовод, вовлекает воду в движение к соплу и, следовательно, придает движителю импульс силы — реактивной тяги.

Рис. 1. Схема плоского прямоточного водометного движителя

Важнейший фактор, влияющий на передачу количества движения от ударной волны к воде, а значит, и на энергоэффективность,— это сжимаемость воды, которая сильно зависит от содержания в ней газов. Вода в таком движителе всегда насыщена пузырьками с газообразными продуктами детонации предыдущего цикла, а при высокой скорости — еще и кавитационными пузырьками. Сжимаемость пузырьковой среды велика, больше, чем сжимаемость чистого газа. Расчет показывает, что при газосодержании в 20-25% прибавка скорости воды за ударной волной в водоводе может достигать 30-40 м/c.

На рис. 2 показан пример расчета одного цикла (частота циклов 10 Гц) на установившемся режиме работы плоского прямоточного импульсно-детонационного гидрореактивного движителя (ИДГРД) при набегающем со скоростью 5 м/с потоке воды. Сверху вниз на шести картинках показана эволюция распределения объемной доли. Верхняя и нижняя картинки очень похожи, значит, начальные условия для каждого рабочего цикла хорошо воспроизводятся. К такому же выводу приводит рис. 3, на котором показана расчетная зависимость мгновенной тяги движителя от времени в первых семи рабочих циклах. Повторяемость формы импульсов достигается уже после двух-трех начальных «выстрелов», а средняя тяга в них положительна, то есть направлена против набегающего потока воды. Если разделить значение средней тяги на секундный расход топливной смеси, придем к ключевому показателю энергоэффективности — удельному импульсу тяги. Расчеты показали, что такой прямоточный движитель может иметь удельный импульс на уровне 400 с при начальном давлении топливной смеси в импульсно-детонационной трубке, близком к атмосферному. Это выше, чем у самых современных ракетных двигателей (200-300 с на уровне моря) при очень высоком давлении в их камере сгорания.

Рис. 2. Рабочий цикл прямоточного импульсно-детонационного гидрореактивного движителя при частоте 10 Гц. Красный цвет соответствует газу, синий — воде, а промежуточные цвета — воде с разным объемным газосодержанием. Расчет проведен для половины движителя

Рис. 3. Расчетная зависимость мгновенной тяги прямоточного импульсно-детонационного гидрореактивного движителя от времени при рабочей частоте 10 Гц. Горизонтальная штриховая линия — средняя тяга после нескольких первых циклов

На рис. 4 показана схема экспериментального образца импульсно-детонационного гидрореактивного движителя (ЭО ИДГРД). Как и в расчетной схеме (см. рис. 1), ЭО состоит из импульсно-детонационной трубки и из прямоточного водовода с водозаборным устройством и соплом. Всего создано и испытано шесть ЭО ИДГРД разных конфигураций: пять в бесклапанном исполнении и один с механическим клапаном.

Рис. 4. Схема экспериментального образца прямоточного импульсно-детонационного гидрореактивного движителя

Компоненты топлива — горючее (бензин) и окислитель (кислород) — подаются в импульсно-детонационную трубку раздельно. Чтобы исключить преждевременное воспламенение топливной смеси, непосредственно перед ее подачей в трубку кратковременно подается продувочный газ — азот.

Система зажигания состоит из электронного модуля зажигания и двух автомобильных свечей. Система управления включает блок управления и исполнительные устройства — электромагнитные клапаны подачи кислорода и азота, форсунки и модуль зажигания. Программное обеспечение блока управления позволяет задавать интервалы подачи топливных компонентов, продувочного газа и импульса зажигания .

Для организации быстрого перехода горения в детонацию и образования детонационной волны в импульсно-детонационной трубке установлены турбулизаторы-завихрители. Трубка изгибается, так что донорная детонационная волна выходит в сопло водовода соосно (параллельно) потоку воды и, трансформируясь в ударную волну, передает воде запасенное количество движения.

Для проведения огневых испытаний ЭО ИДГРД изготовлен испытательный стенд. Схема испытательного стенда — бассейна с системой создания затопленной струи воды — представлена на рис. 5. Для измерения тяги используется тягоизмерительная рама с датчиком усилия (рис. 6). При обтекании ЭО струей воды без подачи топливных компонентов показания датчика усилия принимаются за ноль, а при работе ЭО датчик измеряет тягу.

Рис. 6. Экспериментальный образец прямоточного импульсно-детонационного гидрореактивного движителя на тягоизмерительной раме

Фото: Сергей Фролов

Рис. 5. Схема испытательного стенда

Система создания затопленной струи включает мотопомпу, а также приемный и подающий водоводы. Вода засасывается в мотопомпу через приемный водовод и вводится обратно в бассейн в виде затопленной струи через подающий водовод. Выходной диаметр сопла подающего водовода практически совпадает с входным диаметром водозаборного устройства ЭО, так что через него проходит большая часть водяного потока, и лишь небольшая часть обтекает ЭО снаружи. Таким образом, испытания проводятся в условиях, когда внешним гидродинамическим сопротивлением можно пренебречь.

На рис. 7 показаны примеры записей датчика усилия при работе ЭО ИДГРД с частотой 1 и 20 Гц. Экспериментальные записи мгновенной тяги очень похожи на расчетные (см. рис. 3), причем средняя тяга в эксперименте также существенно положительна.

Читать еще:  Тюнинг мотора ваз 2114 8 клапанов

Рис. 7. Измерения мгновенной тяги при работе экспериментального образца прямоточного импульсно-детонационного гидрореактивного движителя с частотой 1 Гц (сверху) и 20 Гц (снизу)

На рис. 8 показана итоговая экспериментальная зависимость основного показателя энергоэффективности движителя — удельного импульса тяги — от рабочей частоты для всех испытанных ЭО ИДГРД. Видно, что с увеличением рабочей частоты удельный импульс тяги в среднем снижается от

1000 с при частоте 1 Гц до

300 с при 20 Гц, причем при частоте 10 Гц эксперимент хорошо согласуется с расчетом (см. рис. 3). При этом средняя измеренная тяга возрастает с увеличением рабочей частоты от

10 Н при частоте 1 Гц до

40 Н при частоте 20 Гц. Как и в расчете, при экспериментальном определении тяги и удельного импульса первые рабочие циклы не учитывались. В отдельных сериях испытаний показано, что удельный импульс тяги возрастает с увеличением скорости набегающего потока. Это связано с улучшением наполнения водовода водой перед следующим рабочим циклом. Следует подчеркнуть, что во всех испытаниях начальное давление топливной смеси в импульсно-детонационной трубке было близким к атмосферному .

Рис. 8. Измеренные зависимости удельного импульса тяги экспериментального образца прямоточного импульсно-детонационного гидрореактивного движителя от рабочей частоты (разные значки для разных образцов)

Отдельно отметим низкий уровень шума при работе ИДГРД и практически полное отсутствие вредных веществ в выхлопных газах. Низкий уровень шума связан с быстрым затуханием ударных волн в струе пузырьковой среды, а отсутствие вредных веществ — с использованием детонационного горения топлива, при котором высокотемпературные химические превращения происходят в режиме самовоспламенения с очень большой скоростью и высокой полнотой реакции.

Таким образом, впервые в мире спроектированы, изготовлены и испытаны ЭО движителя нового типа для скоростного водного транспорта — прямоточного ИДГРД с прямым преобразованием химической энергии топлива в движение воды.

Испытания проведены на специально разработанном стенде, позволяющем создавать набегающий поток воды со скоростью до 10 м/с. Для лучших образцов движителя экспериментально получены удельные импульсы тяги на уровне 1400 с при низкой рабочей частоте (1 Гц) и 400 с при высокой рабочей частоте (20 Гц). То есть удельный импульс оказался значительно выше, чем у современных жидкостных ракетных двигателей с высоким давлением в камере сгорания (до 200-300 атм.).

Создание практического ИДГРД должно стать одной из приоритетных задач для отечественного скоростного флота. Но новый движитель может использоваться и на тихоходных судах, особенно на мелководье и в арктических водах, где ледяная шуга вызывает эрозию гребных винтов. Он отличается энергоэффективностью, простотой конструкции, отсутствием видимых ограничений по быстроходности, чистотой выхлопных газов и низкой шумностью. Для него также характерны: простота регулирования тяги за счет изменения рабочей частоты, простота масштабирования тяги за счет укрупнения и/или изменения количества импульсно-детонационных трубок, простота регулирования вектора тяги без использования поворотных рулей, а также способность работать на любом топливе, причем при использовании воздуха в качестве окислителя.

Сергей Фролов, доктор физико-математических наук, Институт химической физики им. Н.Н. Семенова РАН, профессор НИЯУ-МИФИ

(По материалам проекта Минобрнауки «Разработка технологии создания гидрореактивной тяги в водометных двигателях высокоскоростных водных транспортных средств и создание стендового демонстрационного образца гидрореактивного импульсно-детонационного двигателя»).

*О демонстрационном образце ракетного двигателя с детонационным горением, использующем цикл Зельдовича, «Наука» рассказывала в февральском номере.

PDF-версия

  • 32
  • 33

История создания моторной лодки

Уже в 19-м столетии предпринимались попытки смонтировать бензиновый или паровой двигатель на гребные лодки, которые применялись в те времена. В начале 19-го века американец Ол Эвенруд изобрел подвесной мотор для мотолодки, и, начиная с 1905 года, в США был налажен серийный выпуск моторных лодок с этим изобретением. С тех пор во всем мире мотолодка стала обычным явлением, возможности которого используют и частные лица, и многие государственные организации.

Расположение подвесного мотора

Первый этап установки подвесного мотора заключается в размещении его на корме с соблюдением симметричности по отношению к бортам плавсредства.

Расположение по высоте:

  1. Рекомендуемый уровень размещения антикавитационной пластины составляет 0-50 мм ниже самого днища лодки.
  2. Следует знать, что уровень установки мотора должен выбираться с учетом действительного назначения данного судна, а также типа его корпуса. Именно поэтому необходимо строго придерживаться указанных рекомендаций производителей водных судов, которые в обязательном порядке описываются в прилагаемых документах.
  3. Рекомендуемая глубина расположения антикавитационной пластины составляет минимум 100 мм по отношению к поверхности воды. Иначе произойдет нехватка воды, поступающей через насос в систему охлаждения, а это уже перегрев подвесного мотора и последующие за этим неисправности.
  4. Если установка двигателя была осуществлена слишком низко, что недопустимо, это может привести к различным механическим повреждениям.
  5. При максимальной нагрузке на водное судно следует опустить мотор полностью и заглушить. По завершении рекомендуется проверить, где оказалось выпускное отверстие холостого хода. Безопасной дистанцией считается 150 мм и больше по отношению к уровню воды.

Как должен крепиться подвесной мотор?

При установке движка на лодку учтите, как он должен располагаться:

  1. Размещать антикавитационную плиту стоит на 0-5 см ниже лодочного днища.
  2. Уровень установки движка зависит от назначения лодки и её корпуса, поэтому чётко выполняйте рекомендации, которые дают производители лодок, для этого читайте техническую документацию.
  3. Глубина расположения антикавитационной детали — от 10 см по отношению к водной поверхности. Иначе будет мало воды, которая поступает через насос в охладительную систему, что приводит к перегреву ПЛМ.
  4. Если на лодку оказывается максимальная нагрузка, полностью опустите движок и прекратите его работу. По окончанию выясните, где находится выпускное отверстие холостого хода. Приемлемое значение — от 15 см относительно водного уровня.

Если двигатель закреплён правильно, лодочный нос не будет задираться или глубоко погружаться.

Последствия неправильного крепления

Благодаря правильной установке ПЛМ ваше судно покажет на что способно, а сам мотор будет долго и хорошо работать. Если же отнестись к процессу крепежа и регулировки движка безответственно, придётся столкнуться со следующими последствиями:

  1. Будет сложно (а иногда даже невозможно) управлять судном.
  2. Судно начнёт кидать в разные стороны в ходе поворотов, разгона и т.п.
  3. Лодка может опрокинуться и принять положение кверху килем.
  4. Будет зачерпываться вода, что может привести к затоплению.
  5. Неправильно установленный мотор может загореться.

Никто не хочет столкнуться даже с одной из этих проблем, поэтому к крепежу ПЛМ нужно отнестись со всей ответственностью.

Выбираем судовой двигатель

Всё о лодочных моторах – подвесных и стационарных, двухтактных и четырехтактных. Выбираем привод – вы узнаете много интересного о водомётах, колонках и валолиниях.

Занимаясь вопросом, как выбрать лодку потенциальный судовладелец акцентирует своё внимание на размерениях судна, комплектации и дизайне. Между тем, выбор силового агрегата – ответственное мероприятие. От того, насколько он будет подходить к условиям эксплуатации, зависит качество отдыха судовладельца.

1. Сколько тактов нужно для счастья

Основной вопрос, интересующий покупателей подвесных моторов – какой тип двигателя предпочесть – двухтактный или четырёхтактный. А может двухтактный с автомиксом? Или может осмелиться взять TLDI / E-Tec? На эту тему сломано множество копий в форумных баталиях. При этом каждый остался при своём мнении.

На самом деле, поиск идеала – бесполезное занятие. Каждый тип двигателя имеет свои преимущества и недостатки.

Положительные моменты двухтактного мотора

  • Невысокая цена.
  • Меньшая масса в сравнении с 4Т.
  • Хорошие стартовые характеристики, по разгону он выигрывает у четырехтактного агрегата аналогичной мощности.
  • В случае утопления его быстро реанимировать – достаточно слить воду из цилиндров, картеров, карбюраторов и бензонасоса, после чего завести.
  • Специфический шум и запах выхлопа двухтактного мотора напоминает о первых выездах под мотором и сопутствующей романтике.

Отрицательные стороны двухтактника

  • На 30% больший путевой расход. Помимо экономической составляющей, это уменьшает район плавания при одинаковом объёме топливных баков.
  • Необходимость покупать и мешать (в случае отсутствия автомикса) двухтактное масло
  • Шумность на малых и средних оборотах.
  • Любителям троллинга неприятен запах выхлопных газов и замасливание свечей на малом ходу.
  • Ликвидность на вторичном рынке оставляет желать лучшего.

Таким образом, два такта смело можно предпочесть в следующих случаях:

  • Ограничены финансы на покупку мотора;
  • Район плавания не предполагает дальних поездок и доступна заправка на воде;
  • Требуется максимальная отдача мотора на старте;
  • Нужно руками переносить резервный мотор (например, перевешивать его с транца основной лодки на ПВХ) мощностью 8-30 л.с.;
  • Нет необходимости часами использовать мотор на холостых оборотах.
Читать еще:  Проблема с электрикой вортекс эстина

Заметим, что автомикс сильно облегчил жизнь пользователям двухтактных моторов. Эта система надёжна, однако до сих пор встречаются любители, мучающие сервисменов вопросами «как заглушить микс». Видимо, это дальние родственники суровых мужиков, которые на всякий случай к первым инжекторным «Жигулям» и «Волгам» прилаживали старый добрый карбюратор.

Немного затронем тему инжекторных 2Т моторов с наддувом низкого давления Tohatsu TLDI и его собрата по экзотике – Evinrude E-tec. Это классные высокотехнологичные моторы, которые вобрали в себя черты 2Т и 4Т моторов. При «подрыве с места», как у двухтактника, они достаточно экономичны и легки. Но стоят дороже четырехтактных моторов, а для общения с ними нужен дружественный сервис или диагностический ноутбук. Поэтому на водоёмах страны эти моторы практически не встречаются. Их мы оставим любителям последних технических достижений.

Четырехтактные моторы

Наиболее популярный класс двигателей маломерных судов. Характерные черты:

  • Высокая экономичность (на 30% меньший расход, чем у 2Т);
  • Высокий ресурс (свыше 5000 моточасов);
  • Богатая комплектация (стабилизированное питание, гидроподъём и система компьютерной диагностики – скорее норма);
  • Низкая шумность;
  • Минимальная токсичность отработавших газов.

Стационарные моторы на 99% — четырехтактные. Оставшийся 1% принадлежит двухтактным гидроциклам.

Отрицательные черты 4Т моторов – это высокая цена и вес (особенно у дизелей). Хотя по весовым показателям разница невелика:

  • Honda BF 20 DK2 SHU – 46кг, Tohatsu 18 – 41 кг, Tohatsu 25 – 51 кг.
  • Yamaha 60 FETOL – 105 кг, Yamaha F60 FETL – 114 кг;
  • Yamaha 250 GETOX – 240 кг, Yamaha F250 DETX – 260 кг;

Четырехтактный мотор следует предпочесть в случае, если вы

  • Не слишком сильно ограничены в бюджете на покупку мотора;
  • Предпочитаете дальние поездки;
  • Любите наслаждаться тишиной и свежим воздухом на малом ходу;
  • Не имеете под рукой заправки и топливо приходится носить в канистрах;
  • Цените комфорт пользования;
  • Проводите обслуживание мотора в конце сезона и не любите подливать масло.

Говоря о преимуществах 4Т мотора, стоит заметить, что в частных руках при умеренной эксплуатации он не окупится по отношению к двухтактному. Но мы же не по этим критериям выбираем технику. В противном случае вместо Тойоты можно было бы ездить на ВАЗе – а что, разница в цене тоже не окупится!

2. Вместо сердца – пламенный мотор

Конечно, чертовски приятно неспешно плыть по реке, наслаждаясь звуком плиц гребного колеса и подкидывая в топку парового котла поленья. Но современный мир далёк от такой романтики. Мы даже не поговорим о дизельных подвесных моторах конца прошлого века Yanmar 28 весом под 100 килограммов и роторных R220 / R450. Поэтому рассмотрим преимущества валового привода, подвесного мотора, водомёта и поворотно-откидной колонки.

Подвесной лодочный мотор (outboard)

Сокращённо – ПЛМ. Наиболее распространённый тип силового агрегата, сочетающий в себе двигатель (мотоголову) и движитель (дейдвуд с редуктором, или «ногу»). Преимущества этой компоновки очевидны.

  • Компактность – вся силовая установка в одном кожухе, свободный кокпит в лодке;
  • Возможность использования редуктора или водомётной насадки – «улитки»;
  • Богатый выбор гребных винтов;
  • Наличие основных запчастей в магазинах;
  • Подводная часть полностью поднимается над водой;
  • Возможность быстрой замены или ремонта силового агрегата;
  • При поломке стационара иногда проще переделать корпус под ПЛМ, чем ремонтировать штатный двигатель;
  • При необходимости быстрой продажи проще найти покупателей отдельно на мотор и корпус.

Недостатки являются продолжением основного достоинства. Риск хищения подвесного мотора в сотни раз выше, чем стационара. Тем более, что ПЛМ востребованы на вторичном рынке, а особенности регистрации и маркировки (в виде таблички-наклейки) не способствуют строгому учёту этих дорогостоящих изделий.

Стационарный двигатель (inboard)

На маленьких лодках не получил распространения ввиду того, что занимает пространство кокпита. Вотчина стационара – от 19 футов, к 25 футам переходящая практически в монополию. Рынок стационарных моторов делят между собой подразделения «Вольво» и «Меркури». Если на относительно небольших лодках в основном встречаются бензиновые MerCruiser, то на катерах покрупнее чаще используют дизельные Volvo-Penta.

Дизели MerCruiser QSD и бензиновые Volvo-Penta G хоть и встречаются на водоёмах страны, но в глазах судовладельцев бензиновые моторы ассоциируются с «МерКрузерами» (L), а дизельные – с легендарными Volvo Penta D.

Каждый из них агрегатируется со своей колонкой – у «МерКрузера» это «Альфа» для начальной серии и «Браво» различных модификаций для других моторов. «Вольво-Пента» не стала придумывать собственного имени для своих колонок – они обозначаются буквенно-цифровыми индексами.

Преимущества стационара – в меньшей шумности, большем объёме, лучшей развесовке, низком центре тяжести, меньшей привлекательности для воров.

Недостатки встроенного мотора – «съедает» место в кокпите, во время стоянки ПОК не поднимается полностью из воды, при неисправностях вентиляции моторного отсека или невнимательности – пожароопасен.

Агрегатируются двигатели с реверс-редуктором (на катерах с валовым приводом), поворотно-откидной колонкой (ПОК), или водомётом (ВД).

При выборе стационара следует обратить внимание на тип системы охлаждения. Открытые (одноконтурные) системы проще, однако в солёной воде стоит отдать предпочтение двухконтурной. В системе с двумя контурами двигатель охлаждает антифриз, который отдаёт тепло забортной воде через водо-водяной холодильник. В этом случае солёная вода не контактирует с рубашкой охлаждения двигателя и не разъедает её.

3. Какой движитель лучше

Говоря о преимуществах двигателей, нельзя не коснуться того, что приводит в движение судно и находится между водой и двигателем. Три основные типа движителей мы перечислили в конце предыдущей главы. Каждый из них обладает преимуществом для определённых акваторий. Нетрадиционные виды привода останутся за кадром – нельзя объять необъятное.

Реверс-редуктор – вал – гребной винт

Этот простой привод наиболее распространен на крупных судах. Являясь самым старым способом передачи вращения от двигателя к гребному винту, он обладает своими достоинствами:

  • Простота в изготовлении и обслуживании. Единственное место, требующее внимания – подшипник Гудрича.
  • Большой выбор гребных винтов и относительная простота их изготовления.
  • Возможность использовать винты большого диаметра.
  • Малая вероятность возникновения кавитации.
  • Приемлемая эффективность.

Недостатки валового привода

  • Требует много места в кокпите или под пайолами;
  • Сложность замены винтов;
  • Большая осадка судна, потребность в причальной стенке;
  • При разгерметизации «Гудрича» возможно затопление катера;
  • Уязвимость валолинии при встрече с подводными препятствиями;
  • Вал не параллелен ватерлинии, при движении лодка «роет носом».

Практически всех недостатков лишены аэрируемые частично погруженные винты (ЧПВ), например, привод Арнесона. Но используются ЧПВ преимущественно на гоночных катерах ввиду сложности расчета и проблем с переменной ватерлинией при разной загрузке.

Кстати, частично погруженный гребной винт малого диаметра используется и в моторах-болотоходах «Go Devil» для небольших охотничьих и рыболовных лодок.

ПОК и ПЛМ

Самые популярные виды приводов. Массово применяются на частных моторных лодках и катерах. Преимущества расположения дейдвуда с редуктором за кормой очевидны:

  • Мощность двигателя реализована максимально эффективно;
  • На ходу возможно регулировать дифферент судна;
  • Процесс замены гребного винта возможен с кормы;
  • Богатый выбор гребных винтов различной конфигурации и материалов;
  • Облегчает процесс снятия с мели в случае ошибок управления;
  • Движение по мелководью ограничено только осадкой подводной части лодки;
  • Во время стоянки можно полностью поднять редуктор ПЛМ из воды или осушить винт ПОК.

Отрицательных сторон немного.

При наматывании сетей повреждается сальник редуктора. Впрочем, производители частично решили эту проблему специальной формой дистанционной шайбы и установкой сдвоенного сальника.

При наезде на мель либо топляк страдает гребной винт или корпус редуктора, который стоит немалых денег.

Подвесные моторы и колонки используются повсеместно – в море, на озёрах, на реках при наличии соответствующей глубины. Если река с каменистым дном, изобилует перекатами, завалами и топляками, применяют другой движитель.

Водомёт (JET)

Его можно встретить на порожистых сибирских реках и нижневолжских раскатах, в Карелии и на пляже катающим лыжников и вейкбордистов. Больший расход топлива – плата за безопасность и проходимость.

Обладая меньшей эффективностью, чем гребной винт, водомёт позволяет с лёгкостью преодолевать мелководные и каменистые участки. Возможность движения ограничивается только прочностью днища лодки. К этому прибавим отсутствие выступающих вращающихся частей – во время буксировки риск травмирования людей сведён к минимуму.

Аналог винта – импеллер (шнек) – спрятан внутри корпуса водовода. Шаг импеллера требует тщательного согласования с мощностью мотора, зато не нуждается в корректировке в зависимости от загрузки катера.

Читать еще:  При нажатии на тормоз слышен стук спереди

Водомёт боится травы (забивается решетка водозаборника – интейк) и мелких камней, которые могут попасть между импеллером и обечайкой.

Помимо стационарных водомётов, популярны насадки к подвесным моторам – «улитки». Несмотря на внушительную цену, они дешевле стационарного комплекта.

4. Какие марки предпочесть

Чтобы ответить на этот вопрос, посмотрите на ближайший водоём. Обычно самую популярную марку видно сразу. В западной части России популярны Yamaha, Suzuki, Mercury, Honda. На Востоке пальму первенства делят «Ямаха» и «Сузуки».

Перед тем, как купить мотор, пройдитесь по магазинам и узнайте о наличии наиболее популярных запчастей. Вам могут впоследствии понадобиться:

  • гайки и шайбы гребного вала;
  • гребные винты различного шага и диаметра;
  • крыльчатка охлаждения;
  • расходные материалы (если вы предпочитаете оригинал).

Нелишне будет поинтересоваться, в течение какого времени доставят менее востребованные детали – гребной вал, прокладки головок блока цилиндров, термостат, бензонасос.

Если на Ваш мотор нет нужной запчасти – присмотритесь к конкурентам. Не так много компаний, производящих навесное оборудование к лодочным моторам. И не исключено, что многие детали можно применять в различных системах (например, поставить водо-масляный холодильник от Mercruiser на Volvo-Penta.

Стоит заметить, что многие лодочные моторы имеют своих «сухопутных» родственников. Например, Honda 50 похожа на мотор легковушки Fit, Suzuki 140-175 на моторы Vitara, стационарные дизели MerCruiser имеют корни Cummins, а «родственников» бензиновых моторов нужно искать среди моторов Oldsmobil, GM и «Форд».

Про лодочные моторы, их разновидности, а также варианты привода можно писать практически бесконечно. Но сегодняшний материал и так получился чересчур объёмным, поэтому не смеем больше задерживать ваше внимание. Спасибо за то, что остаётесь с нами. Удачи на воде, ни топляка, ни ГИМСа!

Маломерные суда

К категории маломерных относятся суда водоизмещением не более 80 тонн, способные перевозить ни е более 12 пассажиров. Для таких судов установлены ограничения по мощности установленных двигателей. К ним относятся моторные лодки, катера, парусные и гребные суда, гидроциклы и т.п. Надзор за маломерными судами осуществляет Государственная инспекция по маломерным судам МЧС РФ.

Катер

Катерами называют небольшие суда длиной 5-10 метров. У катеров и моторных лодок много общего и новичку иногда бывает трудно понять, какое плавсредство прошло перед ним. Основное отличие заключается в моторе: на катере основной мотор – стационарный, а моторные лодки оснащены подвесными моторами. Для защиты пассажиров от непогоды катер может быть оборудован мягким или жестким тентом. Некоторые модели оснащены каютами.

По функциональному назначению существует следующая градация катеров.

  • Прогулочные – предназначены для непродолжительных (не более 2 суток) путешествий по воде.
  • Туристические катера. На них можно совершать длительные прогулки на большие расстояния.
  • Катера для рыбалки. Это, как правило, небольшие скоростные суда с неглубокой осадкой.
  • Спортивные катера.

Гидроцикл

Гидроцикл – плавательное средство, предназначенное для спортивных соревнований или для активного отдыха на воде. Имеет, как правило, стеклопластиковый корпус и снабжен стационарным двигателем внутреннего сгорания с водяным охлаждением.

По типу конструкции различают стоячие и сидячие модели.

Первые – более легкие, скоростные и маневренные. Позволяют выполнять сложные маневры и трюки.

Сидячие гидроциклы бывают двухместные и трехместные. Это плавсредство предназначено для прогулок. Может использоваться для буксировки водного лыжника, «таблетки» или «банана».

Туристические модели сидячих гидроциклов бывают оснащены дополнительными опциями в виде контейнеров для одежды и ступенями для схода купальщиков в воду.

Ведущим мировым производителем гидроциклов всех видов выступает канадская компания BRP – признанный лидер в области техники для спорта и активного отдыха. Официальным дилером BRP в России является компания ПРАЙД.

Из-за чего происходит кавитация и к чему она может привести?

Одной из серьезных проблем, возникающих при применении запорной и регулирующей арматуры, является возникновение кавитации. Особенно сильно этот эффект проявляется при использовании регуляторов понижающих давление «после себя».

Кавитация – это местное нарушение сплошности течения с образованием паровых и газовых пузырей (каверн), обусловленное местным падением давления в потоке

Кавитацию также называют «холодным» кипением

Представьте, что на участке трубопровода, устанавливается регулятор давления, понижающий давление «после себя», любая другая арматура, заужающая проходное сечение, или конструктивно выполненное заужение трубы. Когда поток будет проходить через эти участки, его скорость неизбежно будет возрастать.

Возрастание скорости происходит в силу работы закона сохранения вещества: через каждое сечение трубы за одно и то же время пройдет одно и то же количество воды. Чтобы тоже количество воды прошло через заужение, потоку нужно двигаться быстрее. При этом, заужение проходного сечения в два раза приводит в увеличению скорости потока в 4 раза.

Именно по этой причине, специалисты НПЦ ПромВодОчистка, не рекомендуют использовать регулятор более чем на два типоразмера меньше, чем диаметр трубопровода, на который монтируется регулятор.

Увеличение скорости означает увеличение кинетической энергии потока. На основании закона сохранения энергии, последняя из «ничего» появиться не может. Поэтому рост кинетической энергии неизбежно вызовет падение потенциальной энергии, а роль потенциальной энергии в потоке воды выполняет давление.

Именно на принципе закона сохранения энергии и работают все регуляторы давления.

Как только в своем падении давление приблизится по величине к давлению насыщенных паров, начнётся бурное выделение растворенных в воде газов с одновременным парообразованием. Произойдет так называемое «холодное кипение» или же КАВИТАЦИЯ.

Рис. 1. Последствия кавитации

Рис. 2. Последствия кавитации

Рис. 3. Последствия кавитации

Пузырьки, образованные во время кавитации приводят к постепенному разрушению стенок трубопровода (регулятора)

Опасность заключается в следующем. Пузырьки, образующиеся во время кавитации, это не те «огромные» пузыри воздуха, которые мы видим во время кипения воды в чайнике – это микроскопические пузырьки ≈10 -5 см, и пузырьков таких очень много.

Подхваченные потоком пузырьки, устремляются из зауженной части в широкую часть трубы, где их скорость упадет, а давление, оказываемое на пузырьки — возрастёт. Увеличение давления приведет к конденсации пара, растворению газов в воде, т.е. к исчезновению пузырьков. Казалось бы, всё хорошо, но пузырьки начинают не просто исчезать, они начинают лопаться. Предполагается, что при захлопывании содержащаяся в пузырьке парогазовая смесь, адиабатически (не успевая обменяться теплом с окружающей средой) сжимается до давления 105 Па (300 атмосфер) и нагревается до температур порядка 9000 °С.

Представьте, что миллионы / миллиарды таких «опасных» пузырьков начинают лопаться около стенок трубопровода или регулятора. Каждый хлопок неизбежно будет оставлять свой след на стенке и постепенно будет истончать её, что в последствии приведет разрушению регулятора/трубопровода.

Специалистам НПЦ ПромВодОчистка встречались случаи неправильного подбора регуляторов, при которых регулятор давления из высокопрочного чугуна Ду-250 мм, разрушался из-за сильной кавитации уже через 2 месяца после начала эксплуатации.

Кроме того, кавитация вызывает и другие негативные явления:

  • характерный шум во всём диапазоне частот и сильный акустический сигнал на частоте (уровень звука может превышать 80db);
  • ускорение одних химических реакций и инициирование других;
  • интенсивные микропотоки и ударные волны, способные перемешивать слои жидкости и приводить к сильным вибрациям.

С кавитацией поможет справиться только чётко продуманный план действий

Так как же стоит бороться с кавитацией?

  • Не допускать сильного нагрева жидкости, так как при её нагреве повышается давление насыщенных паров и падает растворимость газов.
  • Не допускать насыщения жидкости газами. В нужных местах на протяжении трубопровода устанавливать сбросные клапана для воздуха (например, DOROT).
Рис. 5. Клапан воздушный кинетический DAV-MS-KРис. 6. Клапан воздушный автоматический DAV-P-A
  • Не допускать сильного загрязнения жидкости, так как твердые частицы являются концентраторами для образования парогазовых пузырьков.
  • Изготовление трубопроводов и регуляторов из износостойких материалов, например, нержавеющая сталь.
  • Установка в регулирующей арматуре специальных вставок, как в арматуре DOROT, из износостойких материалов и направляющих поток пузырьков таким образом, чтобы пузырьки лопались в отдалении от стенок.

Полезное применение кавитации

Явление кавитации применяют в технике и в медицине для совершенствования технологических процессов:

  • в сверхкавитационных торпедах (Торпеды обволакиваются в большие кавитационные пузыри. Это существенно уменьшает контакт с водой, что позволило торпедам двигаться гораздо быстрее);
  • в технологии ультразвуковой очистки поверхностей твёрдых тел,
  • в технологических процессах гомогенизации смесей в промышленных смесителях,
  • в измельчителях твердых включений в тяжёлые топлива,
  • в генераторах водно-мазутных и водно-топливных эмульсий и смесей,
  • в устройствах для снижения вязкости углеводородного топлива,
  • в медицине для уничтожения камней в почках (литотрипсия), лечения целлюлита, ультразвуковой липосакции и др.
Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector