Принцип работы твин турбо

0

Есть ли разница между Twin-Turbo и Bi-Turbo или это одно и то же

Есть ли разница между Twin-Turbo и Bi-Turbo или это одно и то же?

Если раньше двигателями с турбонаддувом оснащались преимущественно спортивные автомобили, то теперь ими оснащают даже городские малолитражки. А всё благодаря доблестным экологам, которые днём и ночью борются за чистоту воздуха на планете, но сейчас не об этом.

Что такое турбонаддув знает каждый автолюбитель. Так же каждый знает, что турбонаддув бывает двойным, который обычно называют Bi-Turbo или Twin-Turbo. Мнений о том, что это такое и в чём разница в сети Интернет настолько много, что технически не грамотному человеку разобраться в этом будет не просто. На фоне этого я собственно и решил написать эту статью, в которой максимально понятно расскажу, что же такое Bi-Turbo и Twin-Turbo, а так же есть ли в этом разница.

Особенности режима Твин Турбо

Двойные компрессорные системы доступны для дизельных и бензиновых двигателей. Однако последнее требует использования более качественного топлива с высоким октановым числом, что снижает вероятность детонации (негативное явление, возникающее в цилиндрах двигателя, разрушающее цилиндро-поршневую группу).

В дополнение к основной функции сокращения времени задержки турбонаддува, схема Twin Turbo позволяет получать больше мощности от двигателя автомобиля, снижает расход топлива и поддерживает максимальный крутящий момент в широком диапазоне оборотов. Это достигается применением различных схем подключения компрессора.

Со сборочных конвейеров известных заводов-производителей часто выходят автомобили, оснащенные сразу двумя турбинами. В данных конструкциях применены системы турбонаддува под названием Biturbo. Турбины различных габаритов здесь расположены последовательно (секвентально) по отношению друг к другу. При включении двигателя сначала вступает в работу маленькая, затем постепенно раскручивается большая.

Спаренная система турбонаддува – зачем она нужна

При использовании технического устройства «Битурбо» можно получить следующие положительные результаты:

  1. Снижение вероятности возникновения эффекта турбоямы (турбозадержки).
  2. Помощь двигателю при переходе на повышенные режимы.
  3. Повышение мощности мотора, удержание максимального крутящего момента в широком диапазоне оборотов ДВС.
  4. Увеличение экономических параметров транспортного средства (снижение потребления горючего, смазочных материалов, охлаждающей жидкости).
  5. Улучшение экологических показателей (эффективное использование выхлопных газов).

Twin Turbo – описание устройства

Схематически данная система устроена следующим образом: турбина меньших размеров плавно переходит в более крупную с усиленными техническими характеристиками.

Последовательность включения турбин системы Twin Turbo:

  • при работе машины на пониженных оборотах коленчатого вала задействована первая ступень;
  • как только вращение коленвала возрастает, в работу подключается следующая турбина.

Принцип работы битурбо (Biturbo)

Когда двигатель работает в режиме низких оборотов, выхлопные газы образуются в малых количествах. Турбина первой ступени, имеющая минимальную инерцию, функционирует постоянно, создавая тягу при небольших потоках выхлопа. Как только отработавшие газы начинают проникать в турбину крупных размеров, компрессор постепенно затягивает воздух, создавая необходимое давление во впускных/выпускных клапанах топливной системы.

Другими словами, чтобы создать необходимое давление наддува при малых оборотах, достаточно работы маленького компрессора в условиях ничтожного поступления выхлопа. По мере постепенного увеличения крутящего момента, оборотов двигателя, возрастают потоки отработавших газов, вовлекая в работу элементы большого турбокомпрессора.

Работая в условиях средних режимов мотора, турбокомпрессор первой ступени достигает предела своих возможностей, выдавая максимальную производительность. При этом заметно нарастает ускорение большой турбины, но ее потенциал пока полностью не раскрыт. На входе в первый компрессор постепенно нарастает избыточное давление, все больше сжимающее топливно-воздушную смесь.

Как только количество оборотов коленвала достигает максимальных значений, существенно увеличивается напор выхлопных газов, выхлоп через открытый перепускной клапан напрямую поступает на вторую турбину, загружая ее полностью. Работая при полной загрузке, турбина второй ступени предохраняет маленькую от повышенных механических нагрузок. Происходит согласованная работа двух частей.

При установке на транспортном средстве двойных турбокомпрессоров обеспечивается сверхвысокое давление наддува. В условиях работы компрессора одиночного типа создать подобную эффективность нереально. Теперь водитель имеет возможность плавно ускоряться без турбоямы и различных рывков машины.

Благодаря применению системы двухступенчатого турбонаддува оба турбокомпрессора эффективно функционируют в условиях всех режимов ДВС: от низких оборотов до максимальных соответственно.

Ремонт системы Bi Turbo от ТурбоРотор

Компания Turbo Ротор проводит капитальный ремонт систем турбонаддува Битурбо. О стоимости наших работ вы можете узнать на нашем сайте в разделе стоимость ремонта турбины или связаться с нами по телефону.

Какие разновидности схем подключения компрессоров существуют?

Системы типа Twin-Turbo и Biturbo отличаются между собой схемой подключения наддува. Как правило подключение реализуют по трем основным схемам: параллельная, последовательная, а также ступенчатая. Далее вы узнаете о каждой из них более детально.

Параллельная схема. Данный тип подключения предусматривает два одинаковых нагнетателя, которые работают одновременно, параллельно друг другу. Главная суть такого типа подключения состоит в том, чтобы снизить инерционность, которая наблюдается при использовании одной большой. Перед тем как поступить в цилиндры, воздух, который нагнетает Biturbo, отправляется во впускной коллектор, где происходит его смешивание с топливом и подача в камеры сгорания. Такую схему, как правило, применяют на дизельных моторах.

Последовательно-параллельная схема. Такой тип подключения представляет собой две одинаковые турбины, которые работают в разных режимах. Одна из турбин постоянно работает, обеспечивая экономию топлива и необходимую мощность на средних оборотах. А вторая «улитка» вступает в работу в случае увеличения нагрузки и повышении оборотов двигателя. За переключение режимов отвечает специальный клапан, который работает под управлением ЭБУ двигателя. Система позволяет эффективно избежать возникновения «турбоямы», обеспечивая плавный равномерный разгон. Как только ЭБУ замечает повышение оборотов в работу встает вторая вспомогательная турбина, в результате чего мотор имеет хороший подхват без провалов и задержек. Похожий принцип используют системы TripleTurbo, у которых не два, а целых три турбокомпрессора.

Читать еще:  Лопнул расширительный бачок ваз 2110

Ступенчатая схема. Двухступенчатая схема турбонаддува — это две турбины, которые имеют разный размер. Установленные «улитки» последовательно соединены с впускным и выпускным каналами. В каналах имеются перепускные клапана, способные регулировать потоки воздуха и выхлопных газов. Такая схема может работать в трех режимах.

На низких оборотах клапаны закрыты, а отработавшие газы идут по каналам через две «улитки». Из-за низкого давления газов, крыльчатки большой турбины почти не вращаются. Воздух свободно проходит мимо обеих ступеней компрессоров, при минимальном избыточном давлении.

Когда обороты двигателя увеличиваются происходит открытие клапана, в результате чего большая турбина начинает включаться в работу. Большой нагнетатель создает давление и сжимает воздух, затем подает его на малое колесо, тем самым еще больше сжимая его.

В момент максимальной нагрузки двигателя, оба перепускных клапана открыты на 100%, это приводит к тому, что поток отработавших газов идет сразу на большую «улитку» и проходя через нее нагнетается в цилиндры. Такой ступенчатый тип, как правило, используется на дизельных моторах.

Плюсы и минусы двойной турбины

Из преимуществ стоит выделить:

  1. Решение проблемы турбоямы;
  2. Прибавка в мощности при относительно небольших объемах силового агрегата;
  3. Обеспечение высокого крутящего момента, прекрасная динамика;
  4. Мотор с Biturbo будет иметь намного более экологичный выхлоп, по сравнению с обычным силовым агрегатом. Этого удается достичь благодаря более эффективному сгоранию топлива;
  5. Экономия топлива.

Недостатки у Битурбо следующие:

  1. Требовательность к качеству топлива и моторного масла;
  2. Высокая стоимость технологии, которая в конечном итоге приводит к удорожанию всего силового агрегата;
  3. Сложная конструкция;
  4. Дорогой и сложный ремонт.

На этом буду заканчивать. Как видите любая, даже самая сложная технология, имеет простое объяснение, главное вникнуть в суть вопроса. Спасибо за внимание, пишите в комментах доводилось ли вам попробовать технологию «Твинтурбо» и «Битурбо» лично, а также какие ваши впечатления о данных системах. Берегите себя, до новых встреч на savemotor.ru

Видео по теме: Что такое Biturbo и Twin-Turbo? В чем их отличия и как это работает?

Супертурбо: все продвинутые системы наддува

Я предельно упростил формулировки, чтобы текст был доступен для понимания широкому кругу читателей. Но для лучшего понимания вопроса рекомендую прочитать мои прошлые публикации о видах наддува и надежности турбомоторов .

Прогресс не стоит на месте, и каждое новое поколение автомобилей должно быть быстрее, экономичнее и мощнее. Часто для повышения мощности используются комбинированные системы наддува, да и «обычные» турбины вовсе не так просты, как кажется на первый взгляд. Каким же образом инженеры научили турбомоторы быть одновременно мощными, эластичными и экономичными? Какие технологии позволяют создавать массовые двигатели с удельной мощностью в 150 л.с. на литр и отличной тягой на низах, и тысячесильных монстров?

«Обычная» турбина

Как я уже писал, турбокомпрессор прост на первый взгляд, но является высокотехнологичным устройством, которое работает в очень жестких условиях. И любое его усложнение сильно сказывается на надежности. Для примера я постараюсь подробнее описать устройство типичного турбокомпрессора без особых усложнений.

Основной частью турбокомпрессора является средний корпус, в нем расположены подшипники скольжения, упорный подшипник и седло уплотнения с кольцами. В самом корпусе есть каналы для прохождения через него масла и охлаждающей жидкости. На совсем старых конструкциях обходились только маслом и для смазки и для охлаждения, но такие турбины не применяются на серийных машинах уже давно. Для предохранения среднего корпуса от воздействия горячих выхлопных газов служит жароотражатель.

В средний корпус устанавливается турбинный вал. Эта деталь не просто вал, конструктивно он соединен с турбинным колесом неразъемным соединением, чаще всего сваркой трением или выполнен из цельного куска металла. Иногда для создания крыльчатки используется керамика-прочности и коррозийной устойчивости лучших конструкционных сталей может не хватать. Сам вал имеет сложную форму, на нем есть утолщение для уплотнения и упорный выступ, а форма цилиндрической части рассчитана с учетом теплового расширения во время работы.

На турбинный вал надевается компрессорное колесо. Оно изготовлено обычно их алюминия и фиксируется на валу гайкой.

Конструкция из среднего корпуса, установленного в него турбинного вала и компрессорного колеса называется картриджем. После сборки этот узел тщательно балансируется, ведь работает он при очень высоких оборотах и малейший дисбаланс быстро выведет его из строя.

Еще турбине нужны две «улитки» — турбинная и компрессорная. Часто они индивидуальны для каждого производителя машин, тогда как центральная часть — картридж и размеры турбинного и компрессорного колеса являются признаками конкретной модели турбины и ее модификации.

Для предохранения от слишком высокого давления наддува используется клапан сброса давления газов, он же вастегейт. Обычно он является частью турбинной улитки и управляется вакуумом. Он закрыт при обычном режиме работы турбины и открывается в случае слишком высокого давления наддува или других проблем в работе мотора, сбрасывая скорость вращения турбины.

Читать еще:  Одобрение типа транспортного средства газ

А теперь о том, как используют турбины и какие технологии применяют, чтобы достичь самых высоких показателей моторов.

Twin-turbo и Bi-turbo

Чем больше и мощнее мотор, тем больше воздуха нужно подавать в цилиндры. Для этого нужно сделать турбину больше или быстрее. А чем больше размер турбины, тем тяжелее ее крыльчатки и тем инерционнее она получается. При нажатии на педаль газа открывается дроссельная заслонка и больше горючей смеси попадает в цилиндры. Образуется больше выхлопных газов и они раскручивают турбину до более высокой частоты вращения, что, в свою очередь, увеличивает количество подаваемой горючей смеси в цилиндры. Чтобы сократить время раскрутки турбин и сопутствующую им «турбояму», изначально испробовали способы, которые называются твин-турбо и би-турбо.

Это две разные технологии, но маркетологи компаний-производителей внесли немало путаницы. Например, на Maserati Biturbo и Mercedes AMG Biturbo на самом деле используют технологию твин-турбо. Так в чем же разница? Изначально Twin Turbo («турбины-близнецы») называлась технология, при которой выхлопные газы разделялись на два равных потока и распределялись на две одинаковые турбины малого размера. Это позволяло получить лучшее время отклика, а иногда и упростить конструкцию мотора, используя недорогие турбокомпрессоры, что очень актуально для V образных двигателей с выхлопными коллекторами «вниз».

Фото:twin turbo Nissan

Обозначение Biturbo («двойная турбина») же относят к конструкциям, в которых применяются последовательно подключенные ко впуску две турбины-маленькую и большую. Маленькая хорошо работает на малой нагрузке, быстро раскручивается и обеспечивает тягу «на низах», а потом в действие вступает большая турбина, более эффективная на большой нагрузке. Маленькая турбина в этот момент отключается системой дроссельных заслонок.

Преимуществом такой схемы является большая эффективность одной большой турбины на большой нагрузке: она обеспечивает лучшее давление и меньший нагрев воздуха при большом ресурсе. А еще вместо маленького турбокомпрессора можно использовать механический или электронагнетатель. Они нагревают воздух меньше, чем турбокомпрессор, и не инерционны.

Но как же потери мощности, которые нужны для их раскрутки? Потери на их привод при малой нагрузке не так существенны. Но расплатой за улучшение характеристик турбин является усложнение впускной системы, приходится использовать много труб и дроссельные заслонки, переключающие потоки воздуха.

Обе технологии используются до сих пор всеми производителями, но все они значительно удорожают мотор, ведь дорогих турбокомпрессоров становится в два раза больше, а система управления ими — сложнее. Для сильно форсированных моторов альтернативы этим технологиям нет или почти нет. Но иногда можно просто улучшить конструкцию стандартной турбины.

Тонкое управление вастегейтом

Wastegate – это, дословно, «ворота для сброса», то есть перепускной клапан. На первых турбинах вастегейт работает очень просто: когда давление на впуске преодолевало натяжение пружины, он открывался, стравливал газы и давление падало. Позже систему усложнили: теперь его открытием руководила не только разница давлений, но и электроника, учитывающая множество параметров — обогащение смеси, режим движения, температуру, детонацию и умеющую избегать нежелательных режимов работы самой турбины. Но управлялся он точно так же — пневматикой. Когда нужно было сбросить давление, клапан просто открывался.

Получить качественный скачок характеристик позволяла плавная регулировка степени открытия перепускного клапана. В этом случае турбина может чаще работать с максимальной отдачей, даже при малых оборотах, а на средних нагрузках уже вступает в действие регулирование и в опасные режимы турбина не переходит.

К сожалению, такой способ сложнее. Для его реализации потребовалось разместить электропривод регулировки рядом с турбиной, что понизило ее надежность: электронике приходится работать в очень жестких условиях, при высокой температуре и высокой вибрации. Но улучшение характеристик стоит того и почти все современные турбины высокофорсированных небольших моторов имеют такую конструкцию.

Более эффективное турбинное колесо. Twinscroll

В поисках повышения эффективности одиночной турбины конструкторская мысль придумала способ, который позволял увеличить эффективность работы турбины и на малых и на больших нагрузках. Турбинное колесо, на которое воздействуют выхлопные газы, разделили на две части, отсюда и название технологии – twin scroll (“двойная улитка”), одна часть турбины более эффективна на большой нагрузке, а другая — на малой, но раскручивают они одно и то же компрессорное колесо на общем валу. Турбина получается не намного сложнее, но несколько эффективнее.

Принцип работы и особенности

Параллельная система

Относительно простая система, включающая симметричную пару компрессоров, работающих одновременно, равномерно распределяя входящий воздух. Чаще всего такую схему применяют на V-образных дизельных двигателях, где каждый компрессор подает воздух во впускной коллектор своей группы цилиндров.

Уменьшение инертности достигается за счет снижения массы ротора турбины, как известно, два небольших компрессора обеспечивают чуть большее давление и раскручиваются быстрее, нежели один, но больший по габаритам и производительности. Тем самым ширина турбоямы существенно уменьшается, а двигатель обеспечивает несколько лучшие характеристики во всем диапазоне оборотов.

Последовательная система

При такой компоновке два соизмеримых компрессора (не обязательно одинаковых по характеристикам) работают в дополняющем режиме.

Схема последовательного Twin Turbo:
1 — перепускной клапан наддува (bypass); 2 — клапан управления подачей воздуха; 3 — датчик разности давлений; 4 — клапан управления подачей отработавших газов; 5 — вторичный турбокомпрессор; 6 — интеркулер; 7 — первичный турбокомпрессор; 8 — перепускной клапан отработавших газов (wastegate).

Читать еще:  Размер шатунных шеек коленвала ваз 2109

Один, обычно более легкий и быстрый, нагнетатель работает постоянно, ликвидируя глубокую и широкую турбояму, второй по сигналу электроники, следящей за оборотами двигателя, включается в работу на более тяжелых режимах, обеспечивая максимальную мощность и топливную эффективность. Такая последовательно-параллельная схема (в пиковых режимах обе турбины работают одновременно) применяется на двигателях любого топливного цикла.

В 2011 году немецкая BMW представила усовершенствованную систему последовательного наддува Triple Turbo.

Ступенчатая система

Самая сложная и прогрессивная система, обеспечивающая широчайший диапазон мощностей.

Схема регулируемого двухступенчатого турбонаддува:
1 — охладитель наддувочного воздуха; 2 — перепускной клапан наддува (bypass); 3 — турбокомпрессор ступени высокого давления; 4 — турбокомпрессор ступени низкого давления; 5 — перепускной клапан отработавших газов (wastegate).

Для создания такого наддува устанавливают два разновеликих компрессора, соединенных друг с другом системой патрубков и bypass-клапанов.

Ступенчатым этот вид турбонаддува называют из-за того, что в минимальных режимах выхлопные газы раскручивают малую турбину, а двигатель легко раскручивается. С ростом оборотов клапан открывается и начинает раскручиваться большая турбина, однако создаваемое ею давление требуется увеличить, что и делает расположенная следом за ней маленькая турбина.

При достижении максимальных оборотов большая турбина выдает настолько высокое давление, что малый нагнетатель становится аэродинамическим сопротивлением. В этот момент автоматика открывает перепускной клапан, и сжатый воздух идет в двигатель, минуя меньшую из турбин.

Рис — работы системы регулируемого двухступенчатого турбонаддува

Сложность такой системы с лихвой компенсируется гибкостью работы и высочайшими характеристиками двигателя.

Современные системы Twin Turbo наддува используют и другие технические трюки, чтобы обеспечить меньшую инертность и большую мощность. Электронная регулировка объема выхлопных газов на колесе турбины, изменяемая геометрия лопаток, стравливающий клапан, незабываемый свист которого свидетельствует о безопасном удалении излишка воздуха во впускном коллекторе при сбросе газа. Перепускной клапан способен не только включать и отключать неиспользуемую в данные момент турбину, но и обеспечивать сохранение давления при кратковременном закрытии дросселя, возвращая запас во впускной коллектор мгновенно, за время закрытия клапана.

Видео:

Такую важную систему, как интеркулер, Twin Turbo может использовать по-разному. Это может быть и один радиатор с общим коллектором, и отдельные охладители для каждого нагнетателя. Ступенчатая система, по очевидным причинам, всегда обходится одним радиатором.

ТВИН-ТУРБО (TWIN-TURBO)

Здесь в основном стоит задача не избавиться от «турбоямы», а максимально повысить производительность (нагнетание сжатого воздуха). Как правило работает такая система на высоких оборотах, когда один нагнетатель не может справиться с возросшей на него нагрузкой, поэтому устанавливается (параллельно) еще один такой же. Вместе они нагнетают воздуха в два раза больше, что даете почти такой же прирост производительности!

Но как же «турбояма», что она здесь свирепствует? А вот и нет, ее тоже эффективно побеждают только немного другим способом. Как я уже говорил, малые турбины гораздо быстрее раскручиваются, так вот представьте – меняют 1 большую, на 2 малых – производительность практически не падает (работают параллельно), а вот «ЯМА» уходит потому как реакция быстрее. Поэтому, получается, создать нормальную тягу, с самого низа.

Установка может быть как на рядные модели силовых агрегатов, так и на V-образные.

Производство и настройка намного дешевле, поэтому это строение применяется у многих производителей.

Есть три разновидности схемы системы Twin Turbo: последовательная, параллельная, и ступенчатая. Эти три схемы отличаются друг от друга расположением, характеристиками и последовательностью работы турбокомпрессоров. Электронная система управления очень точно настраивает работу турбокомпрессоров. Система включает входные датчики, приводы клапанов управления потоком воздуха и переработанным горючем.

Торговый лейбл системы турбонаддува это Twin Turbo, но и есть другое название этой системы — «Biturbo». Не совсем правильно в разных информационных источниках Biturbo воспринимают, как систему с параллельной схемой работы турбокомпрессора.

Видео: как работает турбина:

Straight-6 TwinPower Turbo: N55

Когда технология TwinPower Turbo устанавливается на 6-цилиндровый двигатель, его преимущества становятся очевидными. Мотор с двумя турбинами N55 заменил более дорогой агрегат N54 в 2009 году. Но обе модификации очень похожи друг на друга. Сопоставимый выход на собственный 4-литровый V8 BMW, с более легким блоком и более низким крутящим моментом, еще больше загар, который можно найти в E92 M3 с мощным S65 V8.

Мощность N55 составляет 302 л.с., крутящий момент — 300 Нм (400 Нм). Он устанавливается в моделях 335i, 135i и всех модификациях SUV. Существует еще более мощная версия под индексом N55HP, мощностью 315 л.с., крутящим моментом 450 Нм. Этой версией комплектуются топовые модели, такие как 640i, 740i, и даже спортивный сверхтяжелый хэтчбек M140i.

Дебют двигателя состоялся в 2009 году, его начали устанавливать на пятую серию GT. Оборудованный продвинутой версией 6-цилиндрового двигателя, BMW 535i Gran Turismo способен разгоняться до 100 км/ч всего за 6,3 секунды. Максимальная скорость этого зверя ограничена 250 км/ч. Что касается расхода топлива, то BMW 535i GT потребляет 8,9 литра на 100 километров. Показатель выброса CO2 – 209 г/км.

голоса
Рейтинг статьи
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии