Процент открытия дроссельной заслонки на холостом ходу

0

Электронная дроссельная заслонка: как она устроена, и как её ремонтировать

Электронная дроссельная заслонка: как она устроена, и как её ремонтировать?

Тренд автомобильного инжиниринга всех последних лет – планомерное отстранение водителя от непосредственного управления машиной. Пока, слава богу, мы не дошли массово до потери жесткой связи наших рук и ног с поворачивающимися колесами и тормозами, но к тому все явно идет… Как минимум, ни один автомобиль в наши дни уже не выпускается без электронной дроссельной заслонки, при которой мы не отдаем прямую команду дросселю «больше воздуха!» правой ногой через тросик, а высказываем пожелание блоку управления двигателем, который уже сам отправляет команду на заслонку. Хорошо это или плохо, и как с этим жить?

История вопроса

П ринято считать, что так называемый E-газ – это технология последнего примерно десятилетия. В чистом виде – да, но интегрированный электропривод в дроссельных заслонках появился гораздо раньше – еще в 80-х. В те годы на оси заслонки с одной стороны располагался сектор газа, связанный с педалью акселератора классическим тросиком (да-да, «колесико», которое приводится в движение тросиком от педали, называется «сектором газа»!), а с другой стороны ось заслонки соединялась через шестеренчатую передачу с небольшим электромотором.

Собственно, на поведение машины при движении моторчик влияния не оказывал – связь с ногой водителя была олдскульная, механическая и четкая: как надавишь, так и поедешь! А вступал в работу электромотор только в режиме холостого хода, корректируя степенью приоткрытия заслонки обороты при прогреве и после прогрева, а также чуть добавляя газку при включении мощных потребителей электроэнергии и крутящего момента – кондиционера летом, ГУРа на морозе, разных обогревов и т.п. Чуть позже функции моторчика в дросселе расширились – при практически неизменной конструкции добавилось электронных команд: он стал управлять не только оборотами холостого хода, но и оборотами в движении – при включении круиз-контроля и при активации антипробуксовочной системы.

Сейчас же все достигло «апофигея технологичности» – механическая связь заслонки с педалью газа исчезла в принципе, и все команды – как от ноги водителя, так и от сервисных систем – дроссель получает лишь при посредничестве блока управления двигателем. Причин тому – три:

  • Экологические требования;
  • Рост экономии топлива;
  • Удобство в реализации множества современных функций автомобиля.

Электронный дроссель в наши дни

Итак, прямая связь дроссельной заслонки с педалью упразднена полностью и окончательно. Как я уже говорил, нажатием на педаль мы отправляем сигнал в блок управления, а тот в свою очередь анализирует обстановку и множество параметров, а затем отдает команду на подачу воздуха. При этом надо сказать, что за добрый десяток лет развития тандема электронной педали газа и электронного дросселя в его современном понимании система благополучно переросла ряд детских болезней – как чисто физических, так и софтовых.

Изнашивающиеся скользящие контакты датчиков положения заслонки вытеснила бесконтактная индуктивная связь, появилось множество новых функций – не настолько явных, чтобы занять строчку в техническом описании автомобиля, но в комплексе достаточно важных.

Например, ход педали газа стал нелинейным, что позволило лучше контролировать автомобиль во время начала движения: при мощном моторе (где заслонка имеет большой диаметр) исчез риск избыточно резко рвануться вперед при легком касании педали – электронный дроссель в первой четверти хода педали газа реагирует намеренно вяло.

E-газ позволяет наиболее оптимально провести разгон на авто с турбированным двигателем, в значительной мере борясь с турбоямой и обеспечивая более ровное ускорение с низов. Е-газ поможет и при режиме «педаль в пол», когда в случае классической тросовой заслонки первые мгновения идет неоптимальное сгорание смеси, и теряются секунды на разгоне. Конечно же, нельзя не упомянуть эффективную систему автоматического управления тягой мотора для борьбы со сносами и проскальзываниями ведущих колес.

При этом, правда, нужно отметить, что поведение электронного дросселя на бюджетных машинах по-прежнему серьезно отличается от среднеценовых и, тем более, премиальных автомобилей. В «бюджетках» E-газ, к сожалению, излишне туповат, задумчив и не способствует получению истинного удовольствия от драйва.

Да еще порой и на безопасность влияет отрицательно – дроссель с неоптимальным управляющим программным обеспечением реагирует на нажатие педали с задержкой, выдавая момент на колесах тогда, когда уже поздно. При отсутствии систем стабилизации зимой на скользком покрытии и в повороте такая реакция машины способна свести на нет ваши традиционные навыки зимнего вождения и создать аварийную ситуацию.

Простота и сложность электронного дросселя

Обычно внедрение электроники сопровождается невероятным усложнением конструкции. В случае с дросселем все с точностью до наоборот! Вдумчиво изучив его, можно обнаружить, что он невероятно прост и лишен ряда хитрых технических решений, имевшихся прежде у классических дросселей с тросовым приводом. А уж старый добрый двухкамерный карбюратор по сравнению с E-дросселем – и вовсе сложнейший и дорогущий в производстве прибор эпохи «стимпанк»…

Во-первых, конечно же, E-дроссель не нуждается в регуляторе холостого хода – клапане подачи воздуха по тоненькому каналу, управляемому шаговым двигателем, который склонен к загрязнению картерными газами и нестабильной работе. В случае электронного дросселя клапан регулировки холостого хода исчезает – ХХ обеспечивается приоткрытием основной заслонки – ведь она и так электроуправляемая, а стало быть, прекрасно справляется с регулировкой оборотов, подстраиваясь под включенные потребители, температуру наружного воздуха и антифриза, и т.п.

Еще в систему холостого хода при классическом дросселе часто входили дополнительные байпасные воздушные каналы в обход заслонки, также весьма склонные к засорению. Эти каналы открывались не плавно, а по принципу «вкл/выкл», внешними электроклапанами – к примеру, для компенсации нагрузки на двигатель при включении кондиционера. В электронном дросселе это все тоже оказалось ненужным – компенсация просадки оборотов делается опять же самой дроссельной заслонкой.

Также у классического дросселя имелся подогрев антифризом от системы охлаждения, поскольку все вышеупомянутые тоненькие каналы в холодное время боялись обмерзания. В электронном дросселе, особенно если монтируется он на пластиковом впускном коллекторе, нужды в подогреве часто нет – штуцеры подвода и отвода антифриза из него исчезают.

Читать еще:  Лампа задних габаритов гранта лифтбек

Иначе говоря, электронный дроссель взял на себя сразу несколько функций, до предела упростив свою механическую часть.

Да, по «механике» ломаться стало практически нечему – настолько все там просто и примитивно: простейший электромоторчик, который через пару пластиковых, но достаточно крепких шестеренок связан с осью заслонки, да возвратная пружина на той же оси.

Собственно, даже вопрос периодической чистки дросселя заметно снизил свою актуальность после избавления от системы узких байпасных каналов. Однако существенно усложнилась электронная часть, преподносящая порой сюрпризы – как объяснимые, так и совершенно загадочные и беспричинные.

Проблема заключается в том, что электронная плата дросселя, являющаяся, по сути, только сдвоенным датчиком, отслеживающим положение и динамику открытия заслонки, зачастую неремонтопригодна и отсутствует в продаже. Если электродвигатель при подаче диагностических 12 вольт ровно жужжит, редукторные шестеренки не имеют повреждений и заеданий, а в проводке от заслонки к ЭБУ нет плохих контактов, может потребоваться замена дроссельной заслонки в сборе. Увы.

И вот тут-то многие могут столкнуться с неприятным сюрпризом. На Лада Гранта этот узел в сборе стоит 5 000 рублей, что немало, но в целом подъемно, а на Volkswagen Polo Sedan – 25 000 рублей… Такая сумма способна пробить серьезную дыру в бюджете, а расстройства добавит тот факт, что обе детали, за 5 и за 25 тысяч рублей, технически почти идентичны, но конструктивно и программно несовместимы.

Что делают «jetter», «шпора» и «бустер педали газа»?

Говоря об электронном дросселе, этот класс устройств нельзя не упомянуть. Под такими названиями известен популярный гаджет для машин с E-газом, который, по словам производителей, «дает рост динамике и скорости». «Джеттер» – небольшая коробочка, включающаяся в цепь между педалью газа и блоком управления двигателем и искажающая сигнал педали так, чтобы заставить ЭБУ думать, что «тапка в полу», когда вы лишь слегка коснулись акселератора.

На самом деле, ни скорости, ни динамики эти гаджеты не добавляют и добавить не могут. Они просто меняют электромеханическую характеристику педали акселератора. Характеристика педали всегда нелинейна – изначально электронная педаль чаще всего настроена так, чтобы в первой половине хода быть малоотзывчивой, выдавая четверть мощности двигателя, а за оставшуюся половину выдавать остальные три четверти. Это, безусловно, весьма упрощенное описание, цифры тоже условны, но суть именно такова. «Джеттер» же меняет заводскую характеристику «наизнанку» – педаль начинает выдавать почти всю мощность двигателя на первой половине хода, субъективно делая машину «резкой». Некоторый эффект действительно ощутим, особенно при первом сравнении, но надо понимать, что ничего такого, чего бы нельзя было сделать ногой без применения электронной «примочки», не происходит.

Собственно говоря, программные аналоги «джеттера» давно имеются во многих автомобилях высокого класса. Там это называется переключением режимов вождения, под которыми понимается управление настройками двигателя, КПП и иногда – шасси, если в нем имеются управляемые амортизаторы. Смена режима «нормал» на «спорт» (названия могут быть иными в авто разных марок и моделей) включает в себя наряду с изменением массы других настроек и коррекцию характеристики педали газа, как это делает и «джеттер».

Заслонка изнутри

Перед нами дроссельная заслонка Volkswagen Polo Sedan. Машина приехала на сервис с жалобой на неадекватное поведение педали газа, горящий «чек» и двигатель, явно не развивающий положенную мощность. Диагностика выявила неисправность дроссельной заслонки, которая и была заменена по гарантии. Никаких более глубоких причин выхода её из строя дилерский сервис искать не стал, поскольку подобные процедуры не предусмотрены регламентом. Пользуясь случаем, на примере «приговоренной» заслонки изучим её устройство и попробуем обнаружить неисправность. Ведь гарантия сохранилась не у всех!

Снаружи на дросселе видны четыре отверстия, через которые болты притягивают дроссель к коллектору, небольшой зазор в закрытом состоянии для поступления в цилиндры воздуха в режиме холостого хода, а также логотип итальянского производителя Magneti Marelli. Кстати, одной из старейших в мире компаний, производящих автомобильную электронику.

Датчик положения дроссельной заслонки

Сам датчик положения дроссельной заслонки автомобиля расположен в/на дроссельном узле и в народе получил название “датчик правой ноги”.

Он измеряет величину открытия дроссельной заслонки и передаёт эти данные в блок управления двигателем.

Этот датчик потенциометрического типа, т.е. работает по принципу обычного переменного резистора. Переменные резисторы мы чаще всего встречаем в регуляторах громкости аудиоаппаратуры и во многих других участниках нашей бытовой жизни.

Бытует мнение, что датчик положения дроссельной заслонки является чуть ли не самым главным дозирующим элементом в системе управления двигателем и по его сигналу вычисляется нагрузка на двигатель.

Давайте внесём ясность. Это нужно понимать для правильной диагностики автомобиля.

Мы уже упоминали в статье Бедная смесь о том, что двигатель внутреннего сгорания работает на воздухе с добавлением небольшой массы топлива. Также мы поняли, что главным дозирующим фактором является расход воздуха!

Расход воздуха – это главный и стартовый фактор для всех последующих действий, предпринимаемых ЭБУ в процессе управления двигателем.

Из этого можно сделать правильный вывод, что датчик положения дроссельной заслонки не является основным дозирующим устройством.

Можете его отключить и автомобиль сильно от этого не расстроится, а поедет дальше без особых проблем из пункта А в пункт Б или В, или Г. В общем, куда необходимо, туда и поедет.

Вся нагрузка на двигатель будет основываться на данных датчиков измерения расхода воздуха.

А массой этого самого воздуха мы управляем физическим открытием/закрытием дроссельной заслонки.

Процент открытия дроссельной заслонки.

  • Чтобы отвечать, сперва войдите на форум

#1 Оффлайн AlexF

  • Форумец
  • 5 720 Сообщений:
    • Авто: Опять Duster

    На предыдущей ШН комп показывал все ровно – от 0% на ПХХ до 100% при нажатии педали в пол. Но там обычный тросик. На Дастере педаль электронная, показания непонятны. На ХХ около 12%, на ПХХ до нуля не падает, так и остается 12%. При включенном зажигании, но заглушенном моторе макс. открытие 50%, на работающем моторе и на месте и при движении – макс. 78%. То ли ЭБУ неверные данные дает по OBD, то ли хрен его знает.

    Читать еще:  Проверка проводки автомобиля мультиметром

    У кого есть возможность посмотреть на своей машине – что показывает на ПХХ и при макс. нажатой педали? (с указанием, что за машина).

    • Наверх

    #2 Оффлайн Astriх

    Четырежды герой флейма

  • Форумец
  • 9 953 Сообщений:
    • Авто: Ларгус

    Это нужно педаль в пол удавить на стоящей машине? я честно говоря боюсь. ИМХО: А если на ходу, то дроссель будет открываться не в зависимости от нажатой педали, а по программе скорее всего учитывая экологические нормы

    • Наверх

    #3 Оффлайн alarmmechanic

    Трижды герой флейма

  • Форумец
  • 6 157 Сообщений:
    • Авто: AUDI

    Это нужно педаль в пол удавить на стоящей машине? я честно говоря боюсь. ИМХО: А если на ходу, то дроссель будет открываться не в зависимости от нажатой педали, а по программе скорее всего учитывая экологические нормы

    имеется ввиду на незаведённой. а от чего тогда будет зависеть открытие дросселя?

    На предыдущей ШН комп показывал все ровно – от 0% на ПХХ до 100% при нажатии педали в пол. Но там обычный тросик. На Дастере педаль электронная, показания непонятны. На ХХ около 12%, на ПХХ до нуля не падает, так и остается 12%. При включенном зажигании, но заглушенном моторе макс. открытие 50%, на работающем моторе и на месте и при движении – макс. 78%. То ли ЭБУ неверные данные дает по OBD, то ли хрен его знает.

    У кого есть возможность посмотреть на своей машине – что показывает на ПХХ и при макс. нажатой педали? (с указанием, что за машина).

    скорее всего хрен его знает.чем ЭБУ даёт неверные данные.

    а теперь просто подумай,чем регулировался ХХ при тросике и чем регулируется при электрическом приводе.

    Изменено: alarmmechanic, 4.08.2015 – 12:59

    • 1

    Опыты с электричеством в вашем автомобиле,за деньги,дорого.

    • Наверх

    #4 Оффлайн AlexF

  • Форумец
  • 5 720 Сообщений:
    • Авто: Опять Duster

    а теперь просто подумай,чем регулировался ХХ при тросике и чем регулируется при электрическом приводе.

    • Наверх

    #5 Оффлайн Stevee

    Дважды герой флейма

  • Форумец
  • 3 093 Сообщений:
    • Авто: 2.0 TFSI MT Q

    это нормально у меня на всех машинах с электронной педалью показывает 12-14 % при отпущенной педали и на хх

    • 1
    • Наверх

    #6 Оффлайн AlexF

  • Форумец
  • 5 720 Сообщений:
    • Авто: Опять Duster

    Это нужно педаль в пол удавить на стоящей машине? я честно говоря боюсь. ИМХО: А если на ходу, то дроссель будет открываться не в зависимости от нажатой педали, а по программе скорее всего учитывая экологические нормы

    это нормально у меня на всех машинах с электронной педалью показывает 12-14 % при отпущенной педали и на хх

    • Наверх

    #7 Оффлайн Stevee

    Дважды герой флейма

  • Форумец
  • 3 093 Сообщений:
    • Авто: 2.0 TFSI MT Q

    Логично предположить, что хоть на каком то режиме (максимальный газ в пол при разгоне) заслонка должна открываться на все 100%. Однако у меня такого не наблюдается.

    у всех так, ЭБУ сам решит когда нужно, хватит ли воздуха и т.д теперь не всё так однозначно как было с тросиком

    Регулятор холостого хода


    Дроссельная заслонка на автомобиле
    При помощи регулятора холостого хода, поддерживается необходимая частота вращения коленчатого вала, при абсолютно закрытой заслонке. К примеру, если мотор нагревается или увеличивается нагрузка, к процессу подключается дополнительное оборудование.

    Устроен регулятор следующим образом: корпус, куда крепится шаговый электрический мотор, соединенный с конусной иглой. Во время работы мотора на холостых оборотах, игла как поршень, регулирует площадь сечения воздушного канала.

    Регулировка заслонки

    Для того чтобы дроссельная заслонка работала как часы, ее датчик периодически нужно подстраивать. Для этого выполняется несколько простых действий:

    1. Отключается зажигание, дабы перевести клапан в положение закрыто.
    2. Обесточивается разъем датчика.
    3. Регулируется датчик, при помощи щупа размером 0,4 мм, расположенным между винтом и рычагом.

    Для проверки исправности датчика измеряется уровень напряжения с помощью омметра. Если напряжение обнаружено – датчик следует заменить. При обратной ситуации можно продолжать регулировать датчик.

    Для этого заслонка вращается до того момента, пока вы не увидите те самые показатели, которые прописаны в паспорте авто. Не забудьте проверить после регулировки плотность закрученных болтов и гаек, во время процесса они могли раскрутиться.

    Как известно, топливная система автомобиля – это его жизнеспособность. Если она хоть немного нарушена, машина может вас неприятно удивить в самый неподходящий момент. Если из строя выйдет дроссельная заслонка или другой элемент узла, то последствия могут быт плачевными. Поэтому куда лучше, не скупиться на автомобильную диагностику, при возникновении малейших подозрений на неисправность. Помните – безопасность на дороге превыше всего.

    Аварийный (отказоустойчивый) режим ЭД

    Как и большинство сложных систем, электронные системы управления дроссельной заслонкой имеют ряд аварийных режимов (Failsafe Mode). Они предназначены для того, чтобы поддерживать работу системы или обеспечивать безопасное завершение работы, если что-то пойдет не так.

    Вообще говоря, при первых признаках проблемы большинство электронных средств управления дроссельной заслонкой закрывают дроссельную заслонку и возвращаются в режим холостого хода.

    Так, например, если блок управления двигателем обнаруживает проблему с датчиком, система переходит на холостой ход, предотвращая открытие дроссельной заслонки.

    Также в ЭД встроено несколько резервов. Например, датчиков положения используется по две штуки. Если датчик неисправен или два датчика в одном положении передают разные показания, система закрывает дроссельную заслонку, оставляя двигатель на холостом ходу.

    Всё это не означает, что в электронных системах управления дроссельной заслонкой нет проблем. Скорее, они были разработаны с рядом аварийных режимов, которые при правильной работе должны предотвратить неожиданное ускорение автомобиля.

    В последнее время автопроизводители добавляют еще один аварийный режим: отключение тормозами. Такие ЭД уже доступны на некоторых немецких автомобилях. Они позволяют водителю вмешиваться и блокировать систему дроссельной заслонки. Если Е-газ каким-то образом неисправен и дроссельная заслонка открывается сама по себе, то нажатие на тормоз закроет её.

    Неисправности

    Нарушение взаимодействия между клапаном дроссельной заслонки и датчиком ее положения чревато:

    • плавающими оборотами силового агрегата при его работе двигателя;
    • повышенными оборотами холостого хода;
    • остановкой мотора (заглох) при включении нейтральной передачи;
    • высоким расходом топлива (в зависимости от угла, на котором заклинило клапан);
    • неполноценным раскрытием мощностного потенциала двигателя.

    Индикатор «CHEK» на приборной панели обязательно подаст сигнал о некорректной работе ДЗ.

    Устранение неисправностей

    Для диагностики необходимо проверять узел полностью, а также места его крепления. Порядок действий следующий:

    Читать еще:  Обменять ваз 2110 на другое авто

    Загрязнения ДЗ может стать одной из причин некорректной работы ДВС

    снять с АКБ клемму «-«;

    После монтажа узла обратно проверяется система охлаждения на предмет ее герметичности при заливании соответствующей жидкости − подтеки, капли должны отсутствовать.

    3 Условия для осуществления процесса адаптации холостого хода

    Перед началом обучения следует выполнить ряд обязательных условий:

    • поездить на автомобиле 10 минут;
    • обеспечить напряжение АКБ на холостом ходу не менее 12,9 В;
    • прогреть коробку передач;
    • колеса ТС должны стоять прямо, руль находится в среднем положении;
    • температура двигателя – 70–95 °С;
    • все приборы, оказывающие нагрузку на электросеть машины (обогрев стекол, фары и так далее), следует отключить;
    • селектор автоматической коробки передач ставят на N или Р.

    Электронная дроссельная заслонка

    Электронное управление дроссельной заслонкой позволяет ECM (Engine Control Module) регулировать крутящий момент, подстраивая режим работы двигателя под условия движения. Благодаря этому удается снизить расход топлива и количество вредных выбросов в атмосферу. Давайте рассмотрим, как работает электронная дроссельная заслонка, устройство и принцип работы элементов управления.

    Компоненты системы

    • Блок управления двигателем (ECM). Определяет по входным сигналам от датчиков положения педали акселератора запрашиваемую водителем мощность двигателя. В соответствии с вычислениями и учетом других параметров управления ДВС (к примеру, требования тормозной системы, АКПП) блок управляет электродвигателем модуля дроссельной заслонки (ДЗ). Основой ECM являются функциональный вычислительный и контрольный вычислительный модули.
    • Модуль педали газа с основным и резервным датчиком положения.
    • Датчик выжима педали сцепления.
    • Датчик нажатия педали тормоза.
    • Дроссельная заслонка с электродвигателем и датчиками положения.

    Принцип работы электронной педали газа

    До появления электронной педали акселератора нажатие на педаль через систему тяг и тросов приводило к повороту оси ДЗ. Следующим этапом развития инжекторных двигателяей стало отслеживание угла открытия ДЗ с помощью резистивных датчиков положения. В работу двигателя электроника вмешивается только в режиме холостого хода и при активации круиз-контроля.

    В системе с электронным перемещением ДЗ механическая связь между заслонкой и педалью отсутствует. Угол нажатия педали отслеживается с помощью датчиков двух типов:

    • контактные измерители. Построены на основе потенциометра со скользящим контактом. Перемещение ползунка по резистивной дорожке ведет к изменению сопротивления в цепи. ЭБУ посылает на датчик опорное напряжение в 5 В. Изменение сопротивления ведет к падению или возрастанию напряжения на сигнальном проводе.

    • Бесконтактные датчики. На корпусе неподвижно закреплены два датчика (Hall IC). На вращающейся оси закреплены магниты. Смещение магнитов ведет к изменению интенсивности магнитного поля, что влияет на выходное напряжение датчика Холла.

    Внутри корпуса педального узла всегда размещена пара потенциометров, следовательно, две выходные системы – основная и резервная. При нажатии на педаль меняются оба выходных напряжения. По соотношению уровней сигналов ЭБУ мониторит исправность датчиков. На графике ниже указаны уровни сигналов, используемые на автомобилях Mitsubishi с системой впрыска MPI. Уровни напряжения основного и резервного датчика отличаются в два раза.

    На некоторых системах низкий уровень сигнала на резервном датчике будет соответствовать высокому уровню на основном. Соответственно, если на одном измерителе напряжение при нажатии педали падает, то на втором оно должно пропорционально возрасти.

    Дроссельная заслонка с электронным управлением

    Модуль дроссельного узла состоит из корпуса, дроссельной заслонки, датчиков положения и электродвигателя постоянного тока. Как и в электронной педали газа, для отслеживания положения ДЗ используется пара контактных либо бесконтактных датчиков на эффекте Холла.

    Вращение от статора электродвигателя на ось ДЗ передается через пластиковые шестерни. На корпусе имеется механический ограничитель хода, упираясь в который дроссельная заслонка полностью закрывается. В штатном режиме заслонка полностью никогда не закрыта во избежание закусывания ее в корпусе при нагреве. Ограничитель необходим для адаптации ДЗ, в процессе которой ЭБУ запоминает крайнее положение заслонки в открытом и закрытом состоянии. В штатном режиме заслонка останавливается не доходя до нижнего механического ограничителя.

    Функция самодиагностики

    В случае отсутствия сигнала с датчиков положения ДЗ заслонка перемещается в аварийное положение, при котором двигатель работает только в режиме повышенного холостого хода (порядка 1500 об./мин). На приборной панели при этом может загореться Check Engine или контрольная лампа EPC.

    В случае потери связи с датчиками либо любой аномалии в их показаниях в энергонезависимую память записывается соответствующий код неисправности. Считать ошибки можно через разъем OBD-II с помощью мультимарочного или специализированного сканера. В случае замены, ремонта, связанного с разборкой модуля ДЗ, или чистки узла, необходимо провести адаптацию дроссельной заслонки.

    Управление холостым ходом

    В системе с электронно-управляемой дроссельной заслонкой отсутствует регулятор холостого хода (РХХ). Его функцию на себя берет электродвигатель ДЗ. Поворачивая заслонку на определенный уровень, ЭБУ дозирует воздух для поддержания оборотов холостого хода. Повышенные обороты холостого хода при прогреве, а также возросшая на двигатель нагрузка (включение кондиционера, фар и прочих мощных потребителей) также компенсируется открытием заслонки.

    Базовая частота холостого хода рассчитывается из базовой матрицы с использованием сигнала датчика температуры ОЖ.

    Неисправности

    • Загрязнение ДЗ
    • Неисправность контактных датчиков положения. Из-за постоянного движения ползунка в местах контакта с дорожкой на резистивном слое появляются протиры. Характерно, что симптомы неисправности начинают проявлять себя в зоне частичной нагрузки. Также плохой контакт возможен из-за ослабления нажима ползунка, образования на резистивной дорожке отложений. Бесконтактные датчики на эффекте Холла такой особенности не имеют и выходят из строя намного реже.
    • Обламывание, слизывание зубов на пластиковых шестернях. Происходит при долгой эксплуатации авто с грязной дроссельной заслонкой, когда для ее перемещения электродвигателю приходится прилагать большее усилие.
    • Подсос воздуха в месте фиксации оси заслонки в корпусе модуля.
    • Износ щеток, коллектора электродвигателя.

    Также не стоит забывать о стандартных проблемах с электропроводкой, окислах в разъемах питания.

    голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest
    0 комментариев
    Межтекстовые Отзывы
    Посмотреть все комментарии